Solving Linear Equations

Examples:

Solve for the indicated variable:

1)  6x – 16 = 2x

2)  3n + 1 = 7n - 5

3)  8 - 2(x + 1) = -3x + 1

4)  9x + 7 = 3x – 5

5)  5 + 2(k + 4) = 5(k - 3) + 10

6)  6(y + 2) - 4 = -10

7)  2[x + 3(x – 1)] = 18

8) 

Operations With Polynomials

Examples:

(x2 + 3x - 2) - (3x2 - x + 5)

x2 + 3x - 2 - 3x2 + x -5

-2x2 + 4x - 7

4(5x2 + 3x - 4) + 3(-2x2 - 2x + 3)

20x2 + 12x - 16 - 6x2 - 6x + 9

14x2 + 6x - 7

3x(2x + 5)

6x2 + 15x

(4x - 5)(3x + 7)

12x2 + 28x - 15x - 35

12x2 + 13x - 35

Perform the indicated operations and simplify:

1. (7x2 + 4x - 3) - ( -5x2 - 3x + 2)

2. (7x - 3)(3x + 7)

3. (4x + 5)(5x + 4)

4. (n2 + 5n + 3) + (2n2 + 8n + 8)

5. (5x2 - 4) – 2(3x2 + 8x + 4)

6. -2x(5x + 11)

7. (2m + 6)(m - 1)

8. (5x - 6)(5x + 6)

Factoring Polynomials

Examples:

1. 6x2 + 21x / 2. 2x2 - 13x + 15 / 3. 6x2 + x – 1
3x(2x + 7) / (2x - 3)(x - 5) / (3x - 1)(2x + 1)
4. 3x2 + 7x + 2 / 5. x2 - 64
(3x + l)(x + 2) / (x - 8)(x + 8)
Factor Completely.
1. 16y2 + 8y / 2. 18x2 - 12x / 3. 6m2 - 60m + 10
4. 6y2 - 13y – 5 / 5. 20x2 - 21x - 5 / 6. 12x2 + 11x - 5
7. x2 - 2x – 63 / 8. 8x2 - 6x - 9 / 9. x2 - 121

Solving Quadratic Equations

Solve the following equations.

1)  (2x + 4)(x + 7) = 0

2)  x2= 11x

3)  x2 – 36 = 5x

4)  m2 - 24m = -144

5)  6z2 + 5 = -17z

6)  y2 - 64 = 0

7)  x2 + x – 56 = 0

8)  3y2 + 16y = 35

9)  r2 = 18 + 7r

Linear Equations in Two Variables

Examples:

A) Find the slope of the line passing through the points (-1, 2) and (3, 5).

2. Graph y = x - 4 with slope-intercept method.

Reminder: y = mx + b is slope-intercept form where m =. slope and b = y-intercept.

Therefore, slope is 2/3 and the y-intercept is – 4.

Graph accordingly.

3. Graph 3x + 2y - 8 = 0 with slope-intercept method.

Put in Slope Intercept-form: y = x + 4

m = -3/2 b = 4

4. Write the equation of the line with a slope of 3 and passing through the point (2, -1)

y = mx + b

-1 = 3(2) + b

-7 = b

Equation: y = 3x – 7

Find the slope of the line passing through each pair of points:

1.  (3, 4) (4, 6)

2.  (-4, -6) (-3, -8)

3.  (-5, 4) (-11, 3)

Graph each equation using slope-intercept method:

1.  y = x + 4

2.  -2x + y = 3

3.  y = x - 5

4.  4x = 6 – y

Write an equation, in slope-intercept form, of the line passing through the given point and having the given slope. ' .

1.  (5, 4) m =

2.  (-2, 4) m = -3

3.  (-6, -3) m = - ½

Solving Systems of Equations

Solve for x and y:
x = 2y + 5 3x + 7y = 2
Using substitution method:
3(2y + 5) + 7y = 2
6y + 15 + 7y = 2
13y = -13
y = -1
x = 2(-1) + 5
x=3
Solution: (3, -1) / Solve for x and y:
3x + 5y = 1 2x + 3y = 0
Using linear combination (addition/ subtraction) method:
3(3x + 5y = 1)
-5(2x + 3y = 0)
9x + 15y = 3
-l0x - 15y = 0
-1x = 3
x = -3
2(-3) + 3y = 0
y=2
Solution: (-3, 2)

Solve each system of equations by either the substitution method or the linear combination
(addition/ subtraction) method. Write your answer as an ordered pair.

1.  y = 2x + 4

-3x + y = - 9

2.  x – 2y = 5

3x – 5y = 8

3.  2x + 3y = 6

-3x + 2y = 17

4.  3x + 7y = -1

6x + 7y = 0

5. 12x – 9y = 144

7y + 12x = 82

6. x = 3y +3

2x – y = 11