ISSN 0352-5139

J. Serb. Chem. Soc. Vol. 69, No. 3 (2004)

CONTENTS

Organic Chemistry

P. Zhong and X. Huang: Stereoselective synthesis of (E)-vinyl alkyl sulfides via hydrozirconation of terminal alkynes

175

Inorganic Chemistry

N. Raji}, Dj. Stojakovi}, D. Han`el and V. Kau~i~: The structure directing role of 1,3-diaminopropane in the hydrothermal synthesis of iron(III) phosphate

179

S. B. Tanaskovi} and G. Vu~kovi}: The preparation and characterization of Cu(II) complexes with N,N’,N",N’’’-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane and 2,6-diacetylpyridine bis (semi/thiosemicarbazone)

187

W. Ferenc, B. Bocian and A. Walkow-Dziewulska: Spectroscopic, magnetic and thermal behaviour of the 2,3,4-trimethoxybenzoates of heavy lanthanides(III) and yttrium(III)

195

Physical Chemistry

P. I. Premovi}, N. D. Nikoli}, M. S. Pavlovi} and K. I. Panov: Geochemistry of the Cretaceous-Tertiary transition boundary at Blake Nose (N. W. Atlantic): Cosmogenic Ni

205

G. Popovi} and M. ^akar: The effect of b-cyclodextrin and pH on bifonazole hydrosolubility

225

J. D. Jovanovi} and D. K. Grozdani}: Saturated-liquid heat capacity of organic compounds: New empirical correlation model (Note)

233

Materials

M. S. Lazi}, K. Simovi}, V. B. Mi{kovi}-Stankovi}, P. Jovani} and D. Ki}evi}: The influence of the deposition parameters on the porosity of thin alumina films on steel

239

J. Serb. Chem. Soc. 69(3)175–178(2004)

UDC 678.745+542.913

JSCS – 3142

Original scientific paper

Stereoselective synthesis of (E)-vinyl alkyl sulfides
via hydrozirconation of terminal alkynes

PING ZHONG1,2 and XIAN HUANG2

1Department of Chemistry, Wenzhou Normal College, Wenzhou 325027, P. R. China and 2Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China (e-mail: )

(Received 15 July, revised 3 November 2003)

Abstract: Terminal alkynes react with Cp2Zr(H)Cl (Cp = h5-C5H5) to give organozirconium complexes, which are trapped with alkylsulfenyl chlorides to afford (E)-vinyl alkyl sulfides in good yield.

Keywords: alkyne, sulfide, alkylsulfenyl chloride, hydrozirconation, synthesis.

REFENCES

1. T. Takeda, F. Kanamori, H. Matsusita, T. Fujiwara, Tetrahedron Lett. 32 (1991) 6563

2. D. F. Andres, E. G. Laurent, B. S. Marquet, H. Benotmane, A. Bensadat, Tetrahedron 51 (1995) 2605

3. Y. Takikawa, K. Shimada, H. Matsumoto, H. Tanabe, S. Takizawa, Chem. Lett. (1983) 1351

4. M. Hoshi, Y. Masuda, A. Arase, Chem. Commun. (1985) 1068

5. G. H. Posner, P. W. Tang, J. Org. Chem. 43 (1978) 4231

6. S. Murshashi, M. Yamamura, K. Yanagisawa, Nobuaki Mita, K. Kondo, J. Org. Chem. 44 (1979) 2408

7. M. Foa, R. Santi, F. Garavaglia, J. Organomet. Chem. 206 (1981) C29-C32

8. X. Huang, P. Zhong, Org. Prep. Procedures Int. 31 (1999) 301

9. X. Huang, X. H. Xu, W. X. Zheng, Synth. Commun. 29 (1999) 2399

10. S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, B. T. Watson, S. M. King, Tetrahedron Lett. 28 (1987) 3895

11. D. N. Harpp, B. T. Friedlander, R. A. Smith, Synthesis (1979) 181

12. L. Benati, L. Capella, P. C. Montevecchi, P. Spagnolo, J. Org. Chem. 59 (1994) 2818

13. Y. Ichinone, K. Wakamatsu, K. Nozaki, J. L. Birbaum, K. Oshima, K. Utimoto, Chem. Lett. (1987) 164

14. X. Huang, H. Z. Zhang, Synthesis (1989) 42.

J.Serb.Chem.Soc. 69(3)179–185(2004)

UDC 546.723–31+546.182.6:542.913

JSCS – 3143

Original scientific paper

The structure directing role of 1,3-diaminopropane in the
hydrothermal synthesis of iron(III) phosphate

NEVENKA RAJI]1, DJORDJE STOJAKOVI]1, DARKO HAN@EL2 and VEN^ESLAV KAU^I^3,4

1Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia and Montenegro (e-mail address: ), 2Institute Jo`ef [tefan, 1000 Ljubljana, Slovenia, 3National Institute of Chemistry, 1000 Ljubljana, Slovenia and 4University of Ljubljana, 1000 Ljubljana, Slovenia

(Received 6 October 2003)

Abstract: 1,3-Diaminopropane (DAP) was used as a structure-directing agent for the hydrothermal synthesis of an organically templated iron phosphate. During crystallization at 180 ºC, iron phosphate (FePO-DAP) with a layered structure was formed after one day. Longer crystallization yielded a mixture of FePO-DAP and leucophosphite, raising the question whether a transformation of FePO-DAP to leucophosphite occurs, or wheter DAP decomposes under hydrothermal conditions resulting in leucophosphite formation. Lattice energy and free energy calculations strongly support the supposition that a decomposition of DAP occurs prior to the formation of leucophosphite.

Keywords: FePO, iron phosphate, hydrothermal synthesis, GULP, open-framework.

REFERENCES

1. N. Rajic, V. Kaucic, in Encyclopedia of Catalysis, Vol. 5, I. T. Horvath, Ed., J. Wiley&Sons, Inc., Hoboken, 2003, pp. 189

2. A. K. Cheetham, G. Ferey, T. Loiseau, Angew. Chem. Int. Ed. 38 (1999) 3268

3. M. Riou-Cavellec, D. Riou, G. Ferey, Inorg. Chim. Acta 291 (1999) 317

4. K.-H. Lii, Y.-F. Huang, V. Zima, C.-Y. Huang, H.-M. Lin, Y.-C. Jiang, F.-L. Liao, S.-L. Wang, Chem . Mater. 10 (1998) 2599

5. S. Mandal, S. Natarajan, W. Klein, M. Panthofer, M. Jansen, J. Solid State Chem . 173 (2003) 367 and references 2-29 therein

6. N. Rajic, R. Gabrovsek, V. Kaucic, Thermochim. Acta 359 (2000) 119

7. N. Rajic, D. Hanzel, N. Zabukovec Logar, D. Stojakovic, V. Kaucic, Microporous Mesoporous Mat. 55 (2002) 313

8. K.-H. Lii, Y.-F. Huang, J. Chem. Soc., Chem. Commun. (1997) 1311

9. K.-H. Lii, Y.-F. Huang, J. Chem. Soc., Dalton Trans. (1997) 2221

10. J. D. Gale, J. Chem. Soc., Faraday Trans. 93 (1997) 629 (hppt://www.ch.ic.ac.uk/gale/Research/gulp.html)

11. C.R.A. Catlow, W. C. Mackrodt (Eds.), Computer Simulation of Solids, Springer, Berlin, 1982

12. B. G. Dick, A. W. Overhauser, Phys. Rev. 112 (1958) 90

13. R. A. Jackson, C.R.A. Catlow, Mol. Sim. 1 (1988) 207

14. P. A. Wright, S. Natarjan, J. M. Thomas, R. G. Bell, P. L. Gai-Boyes, R. H. Jones, J. S. Chen, Angew. Chem., Int. Ed. Engl. 31 (1992) 1472

15. R. E. Morris, S. J. Weigel, N. J. Henson, L. M. Bull, M. T. Janicke, B. F. Chmelka, A. K. Cheetham, J. Am. Chem. Soc. 116 (1994) 11849

16. D. W. Lewis, C.R.A. Catlow, G. Sankar, S. W. Carr, J. Phys Chem. 99 (1995) 2377

17. R. G. Bell, R. A. Jackson, C.R.A. Catlow, J. Chem. Soc., Chem. Commun. (1990) 782

18. R. A. Jackson, S. C. Parker, P. Tschaufeser in Modeling of Structure and Reactivity in Zeolites, C.R.A. Catlow Ed., Academic Press, London, 1992, p. 43

19. J. G. Gonzales, J. C. Alcaz, A. R. Ruiz-Salvador, A. Gomez, A. Dago, C. Pozas, Microporous Mesoporous Mater. 29 (1999) 361

20. J. J. Pluth, J. V. Smith, J. M. Bennett, J. P. Cohen, Acta Cryst. C40 (1984) 2008

21. V. A. Morozov, K. V. Pokholok, B. I. Lazoryak, A. P. Malakho, A. Lachgar, O. I. Lebedev, G. Van Tendeloo, J. Solid. State Chem. 170 (2003) 411

22. N. Rajic, D. Stojakovic, V. Kaucic, Zeolites 10 (1990) 802

23. N. Rajic, N. Z. Logar, A. Golobic, V. Kaucic, J. Phys. Chem. Solids 64 (2003) 1097

24. J. Batista, V. Kaucic, N. Rajic, D. Stojakovic, Zeolites 12 (1992) 925.

J.Serb.Chem.Soc. 69(3)187–193(2004)

UDC 546.562+546.17:615.281

JSCS – 3144

Original scientific paper

The preparation and characterization of Cu(II) complexes with N,N’,N”,N’”-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane and 2,6-diacetylpyridine bis(semi/thiosemicarbazones)

SLADJANA B. TANASKOVI]a and GORDANA VU^KOVI]b

aFaculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade and bFaculty of Chemistry, University of Belgrade, P. O. Box 158, 11001 Belgrade, Serbia and Montenegro
(e-mail: )

(Received 24 April, revised 13 October 2003)

Abstract: Two new Cu(II) mixed-ligand complexes with octadentate N,N’,N”,N’”-tetrakis(2-pyridylmethyl))-1,4,8,11-tetraazacyclotetradecane (tpmc) and potentially pentadentate ligands 2,6-diacetylpyridine bis(semicarbazone) (DAPsc2) or 2,6-diacetylpyridine bis(thiosemicarbazone) (DAPtsc2) were prepared. The general formulas: [Cu4 DAPsc2(tpmc)2]ClO4)8 . 5CH3COCH3 . H2O and [Cu2 DAPtsc2(tpmc)](ClO4)4 . 7 C2H5OH were proposed on the basis of elemental analyses and conductometric measurements. The complexes were characterized by magnetic measurement, electronic absorption and IR spectroscopy. For the dinuclear complex, an exo coordination of Cu(II) with four nitrogens from tpmc and m-bonded DAPtsc2 through sulfurs and possibly terminal hydrazinic (azomethine) nitrogens is assumed. For the tetranuclear complex, it is supposed that one DAPsc2 bridges two [Cu2 tpmc]4+ units using oxygens and terminal hydrazinic nitrogens as ligators. Finally, some antibacterial activity of the complexes was found.

Keywords: Cu(II) complexes, N,N’,N”,N’”-tetrakis(2-pyridylmethyl))-1,4,8,11-tetraazacyclotetradecane (tpmc), 2,6-diacetylpyridine bis(semicarbazone), 2,6-diacetylpyridine bis(thiosemicarbazone), antibacterial activity.

REFERENCES

1. a) G. Vu~kovi}, E. Asato, N. Matsumoto, S. Kida, Inorg. Chim. Acta 171 (1990) 45; b) G. A. Bogdanovi}, Z. M. Miodragovi}, G. Vu~kovi}, R. Markovi}, A. Spasojevi} De-Biré, Synth. React. Inorg. Met.-Org. Chem. 31 (2001) 1189; c) G. Vu~kovi}, M. Antonijevi}, D. Poleti, J. Serb. Chem. Soc. 67 (2002) 677; d) Z. M. Miodragovi}, G. Vu~kovi}, S. P. Sovilj, D. D. Manojlovi}, M. J. Malinar, J. Serb. Chem. Soc. 63 (1998) 781; e) Z. M. Miodragovi}, G. Vu~kovi}, V. M. Leovac, J. Serb. Chem. Soc. 66 (2001) 597

2. a) M. J. M. Campbell, Coord. Chem. Rev. 15 (1975) 279; b) S. Padhye, G. B. Kauffman, Coord. Chem. Rev. 63 (1985) 127; c) J. S. Casas, M. S. Garcia-Tacende, I. Sordbo, Coord. Chem. Rev. 209 (2000) 197

3. V. M. Leovac, V. I. ^e{ljevi}, Koordinaciona hemija izotiosemikarbazida i njegovih derivata, Univerzitet u Novom Sadu, 2002, (in Serbian)

4. S. P. Sovilj, G. Vu~kovi}, V. M. Leovac, D. M. Mini}, Polish J. Chem. 74 (2000) 945

5. E. Asato, H. Toftlund, S. Kida, M. Mikuriya, K. Murray, Inorg. Chim. Acta 165 (1989) 207

6. M. Mohan, P. Sharma, M. Kumar, N. K. Jha, Inorg. Chim. Acta 125 (1986) 9

7. G. J. Palenik, D. W. Wester, U. Rychlewska, R. C. Palenik, Inorg. Chem. 15 (1976) 1814

8. Handbook of Chemistry, 10th Ed., McGraw-Hill, New York, 1961

9. a) B. N. Figgis, Introduction to the Ligand Fields, Interscience, New York, 1966; b) E. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th Ed., Wiley, 1988

10. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th., Wiley, New York, 1997.

J.Serb.Chem.Soc. 69(3)195–204(2004)

UDC 546.650+546.668+547.5:54–74

JSCS – 3145

Original scientific paper

Spectroscopic, magnetic and thermal behaviour of the 2,3,4-trimethoxybenzoates of heavy lanthanides(III) and
yttrium(III)

WIESºAWA FERENC, BEATA BOCIAN and AGNIESZKA WALKÓW-DZIEWULSKA

Department of General Chemistry, Faculty of Chemistry, Maria Curie-Sk»odowska University, Pl 20-031, Lublin, Poland (e-mail: )

(Received 28 July, revised 10 October 2003)

Abstract: The complexes of 2,3,4-trimethoxybenzoic acid with Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III) are crystalline, anhydrous salts with colours typical of the M(III) ions. The carboxylate group is probably a bidenate, chelating ligand. The thermal stabilities of the complexes were examined under an air atmosphere in the temperature range 293–1273 K. The solubility in water at 293 K for all the heavy lanthanide(III) and yttrium(III) complexes are in the order of 10-3 mol dm-3. The magnetic moments of the complexes were determined in the temperature range 77–300 K.

Keywords: heavy lanthanides(III), yttrium(III), thermal stability, IR spectra, complexes of 2,3,4-trimethoxybenzoic acid, magnetic moments.

REFERENCES

1. W. Ferenc, B. Bocian, Acta Chem. Hung. 133 (1996) 481

2. W. Ferenc, A. Walków-Dziewulska, Collect. Czech. Chem. Com. 65 (2000) 179

3. W. Ferenc, A. Walków-Dziewulska, J. Them. Anal. Cal. 61 (2000) 923

4. W. Ferenc, A. Walków-Dziewulska, J. Serb. Chem. Soc. 65 (2000) 27

5. W. Ferenc, A. Walków-Dziewulska, J. Them. Anal. Cal. 63 (2001) 865

6. W. Ferenc, A. Walków-Dziewulska, J. Serb. Chem. Soc. 65 (2000) 789

7. W. Ferenc, A. Walków-Dziewulska, J. Serb. Chem. Soc. 66 (2001) 543

8. W. Ferenc, A. Walków-Dziewulska, J. Them. Anal. Cal. 71 (2003) 375

9. W. Ferenc, B. Bocian, M. Chudziak, J. Therm. Anal. Cal. 58 (1999) 639

10. W. Ferenc, M. Ciolek, B. Bocian, Indian J. Chem . 37A (1998) 176

11. W. Ferenc, B. Bocian, J. Therm. Anal. Cal. 60 (2000) 131

12. W. Ferenc, B. Bocian, Croat. Chim. Acta 70 (1997) 617

13. B. N. Figgs, R. S. Hyholm, J. Chem. Soc. (1958) 4190

14. E. König, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer Verlag, Berlin 1966

15. J. Janczak, Polish J. Chem. 73 (1999) 437

16. R. M. Silverstein, G. C. Bassler, Spektroskopowe metody identyfikacji zwi zków organicznych, PWN, Warszawa, 1970 (in Polish)

17. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York 1991

18. L. A. Kazicyna, N. B. Kupletska, Metody spektroskopowe wyznaczania struktury zwi zków organicznych, PWN, Warszawa 1976 (in Polish)

19. W. Lewandowski, H. Bara½ska, Vibr. Spectr. 2 (1991) 211

20. K. Bajdor, P. Koczo½, E. Wi“ckowska, W. Lewandowski, Intern. J. Quan. Chem. 4 (1997) 385

21. W. Lewandowski, J. Mol. Str. 101 (1983) 93

22. K. Burger, Coordination Chemistry: Experimental Methods, Akademiai Kiadó, Budapest, 1973

23. E. Pretsch, T. Clerc, J. Seibl, W. Simon: Tables of Spectral Data for Structure Determination of Organic Compounds, Springer Verlag, Berlin 1989

24. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman & Hall Ltd., London 1975

25. G. Varsányi, Assignments for Vibrational Spectra of 700 Benzene Derivatives, Akademiai Kiadó, Budapest, 1973

26. Praca zbiorowa pod redakcj A. Rajcy, Spektroskopowe metody badania struktury zwi zków organicznych, Skrypt Politechniki Sl skiej w Gliwicach Nr 1659, Gliwice 1991 (in Polish)

27. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, Toronto, 1997

28. B. S. Manhas, A. K. Trikha, J. Indian. Chem. Soc. 59 (1982) 315

29. C. I. O’Conner, Progress in Inorganic Chemistry, Vol. 29, Wiley, New York 1982

30. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, Angew. Chem. 26 (1989) 913

31. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi, Inorg. Chem. 28 (1989) 275

32. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi, P. Rey, Inorg. Chem . 28 (1989) 320

33. S. P. Sinha, Systematics and Properties of the Lanthanides, Reidel, Dordrecht 1983

34. D. J. Karraker, J. Chem. Educ. 47 (1970) 424.

J.Serb.Chem.Soc. 69(3)205–223(2004)

UDC 523.44+550.4:549.263

JSCS – 3146

Original scientific paper

Geochemistry of the Cretaceous-Tertiary transition boundary at Blake Nose (N.W. Atlantic): Cosmogenic Ni

PAVLE I. PREMOVI]1,, NIKOLA D. NIKOLI]1, MIRJANA S. PAVLOVI]2 and KATJA I. PANOV1

1Laboratory for Geochemistry, Cosmochemistry & Astrochemistry, University of Ni{, P. O. Box 91, 18000 Ni{ and 2Vin~a Institute of Nuclear Sciences, P. O. Box 522, 11001 Belgrade, Serbia and Montenegro (e-mail: )

(Received 17 October 2003)

Abstract: The Cretaceous-Tertiary (KT) boundary transition at the Blake Nose Plateau recovered by ODP Leg 171B (site 1049, hole A, core 17X, section 2) contains an ejecta bed (thickness ca. 17 cm) marking a late Cretaceous asteroid impact. The nature and geochemical composition of this bed imply that it originated mainly from the target rocks of the Chicxulub impact site (Yucatan Peninsula, Mexico), the site of the presumed asteroid impact. The ejecta bed of hole 1049A contains relatively high concentrations of Ni (up to 165 ppm) within the carbonate fraction. It is reasoned that this enhancement represents a sudden and rapid airfall of high cosmogenic Ni into he Blake Nose Basin. The source of the metal was the Chicxulub impacting (carbonaceous) chondrite. It is suggested that many calcareous planktons in the KT ocean surface water of the Blake Nose Plateau were probably vulnerable to the high influx of superacid rainfall and associated toxic metals (e.g., Ni) created by the impact.