1. Ainley‚ M.‚ & Ainley‚ J. (2011). A cultural perspective on the structure of studentinterest in science. International Journal of Science Education‚3(1)‚ 51-71.
  2. Areepattamannil‚ S. (2012). First- and second-generation immigrant adolescents’multidimensional mathematics and science self-concept and their achievement in mathematics and science. International Journal of Science and Mathematics Education‚ 10(3)‚ 695-716.
  3. Areepattamannil, S., & Kaur, B. (2013). Factors predicting science achievement of immigrant and non-immigrant students: a multilevel analysis. International Journal of Science and Mathematics Education‚ 11(5), 1183-1207.
  4. Atar, H. Y., & Atar, B. (2012). Investigating the multilevel effects of several variables on Turkish students’ science achievement on TIMSS. Journal of Baltic Science Education, 11(2), 115-126.
  5. Aypay‚ A.‚ Erdoğan‚ M.‚ &Sözer‚ M. A. (2007). Variation among schools on classroom practices in science based on TIMSS-1999 in Turkey. Journal of Research in Science Teaching‚ 44(10)‚1417-1435.
  6. Bagata, B., Geske, A., & Kiselova, R. (2004). Using the IEA TIMSS tests to compare pupils’ science education achievements at regional and school levels. Journal of Baltic Science Education, 3(1), 34-41.
  7. Basl‚ J. (2011). Effect of school on interest in natural sciences: A comparison of the Czech republic, Germany, Finland, and Norway based on PISA 2006.International Journal of Science Education‚ 3(1)‚ 145-157.
  8. Buccheri‚ G., Gürber‚ N. A.‚ & Brühwiler‚ C. (2011). The impact of gender oninterest in science topics and the choice of scientific and technical vocations.International Journal of Science Education‚ 33(1), 159-178.
  9. Bybee‚ R.‚ & McCrae‚ B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of ScienceEducation‚ 33(1), 7-26.
  10. Chen‚ S. F., Lin‚ C. Y., Wang‚ J. R., Lin‚ S. W.‚ & Kao‚ H. L. (2012). A cross-gradecomparison to examine the context effect on the relationships among familyresources, school climate, learning participation, science attitude, and scienceachievement based on TIMSS 2003 in Taiwan. International Journal of ScienceEducation‚ 34(14), 2089-2106.
  11. Chiu‚ M. S. (2012). Differential psychological processes underlying theskill-development model and self-enhancement model across mathematics andscience in 28 countries. International Journal of Science and MathematicsEducation‚ 10(3), 611-642.
  12. Coertjens‚ L., Pauw‚ J. B., Maeyer‚ S. D., & Petegem‚ P. V. (2010). Do schools makea difference in their students’ environmental attitudes and awareness? Evidencefrom PISA 2006. International Journal of Science and Mathematics Education,8(3), 497-522.
  13. Dempster‚ E. R.‚ & Reddy‚V. (2007). Item readability and science achievement inTIMSS 2003 in South Africa. Science Education‚ 91(6), 906-925.
  14. Drechsel‚ B., Carstensen‚ C.‚ Prenzel‚ M. (2011). The role of content and contextin PISA interest scales: A study of the embedded interest items in the PISA 2006science assessment. International Journal of Science Education‚ 33(1), 73-95.
  15. Gilleece‚ L., Cosgrove‚ J., & Sofroniou‚ N. (2010). Equity in mathematics andscience outcomes: Characteristics associated with high and low achievement onPISA 2006 in Ireland. International Journal of Science and MathematicsEducation‚ 8(3), 475-496.
  16. Glynn‚ S. M. (2012). International assessment: A research model and teachers’ evaluation of TIMSS science achievement items. Journal of Research in ScienceTeaching‚ 49(10), 1321-1344.
  17. Hampden-Thompson, G.,Bennett, J. (2013). Science teaching and learning activities and students engagement in science. International Journal of Science Education‚ 35(8), 1325-1343.
  18. Henno, I., & Reiska, P. (2013). Impact of the socio-cultural context on student science performance and attitudes: The case of Estonia. Journal of Baltic Science Education, 12(4), 465-481.
  19. Ho‚ S. C. (2010). Family influence on science learning among Hong Kongadolescents: What we learned from PISA. International Journal of Science andMathematics Education‚ 8(3), 409-428.
  20. Jen, T. H., Lee, C. D., Chien, C. L., Hsu, Y. S., & Chen, K. M. (2013). Perceived social relationships and science learning outcomes for Taiwanese eighth graders: Structural equation modeling with a complex sampling consideration. International Journal of Science and Mathematics Education‚ 11(3), 575-600.
  21. Kaya‚ S.‚ & Rice‚ D. C. (2010). Multilevel effects of student and classroom factors on elementary science achievement in five countries. InternationalJournal of Science Education‚ 32(10), 1337-1363.
  22. Kjærnsli‚ M.‚ & Lie‚ S. (2011). Students’ preference for science careers:International comparisons based on PISA 2006. International Journal of ScienceEducation‚ 33(1), 121-144.
  23. Knipprath‚ H. (2010). What PISA tells us about the quality and inequality of Japaneseeducation in mathematics and science. International Journal of Science andMathematics Education‚ 8(3), 389-408.
  24. Kubiatko‚ M., & Vlckova‚ K. (2010). The relationship between ICT use and scienceknowledge for Czech students: A secondary analysis of PISA 2006. International Journal of Science and Mathematics Education‚ 8(3), 523-543.
  25. Lavonen, J.‚ & Laaksonen‚ S. (2009). Context of teaching and learning school science in Finland: Reflections on PISA 2006 results. Journal of Research inScience Teaching‚ 46(8), 922-944.
  26. Lin‚ H. S., Hong‚ Z. R., & Huang‚ T. C. (2012). The role of emotional factors inbuilding public scientific literacy and engagement with science. InternationalJournal of Science Education‚ 34(1), 25-42.
  27. Liu‚ X.‚ & Lesniak‚ K. M. (2005). Students’ progression of understanding the matter concept from elementary to high school. Science Education‚ 89(3), 433-450.
  28. Liu, X., & McKeough, A. (2005). Developmental growth in students’ concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching‚ 42(5), 493-517.
  29. Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K–12 students’ performance on large-scale assessment items related to energy. Journal of Research in Science Teaching‚ 45(5),554-573
  30. Liu, X., & Whitford, M. (2011). Opportunities-to-learn at home: Profiles of students with and without reaching science proficiency. Journal of Science Education and Technology, 20(4), 375-387.
  31. Louis‚ R. A.‚ & Mistele‚ J. M. (2012). The differences in scores and self-efficacy bystudent gender in mathematics and science. International Journal of Science andMathematics Education‚ 10(5), 1163-1190.
  32. McConney‚ A.‚ & Perry‚ L. B. (2010). Science and mathematics achievement inAustralia: The role of school socioeconomic composition in educational equalityand effectiveness. International Journal of Science and Mathematics Education,8(3), 429-452.
  33. McConney‚ A., Oliverb‚ M., Woods‐McConney‚ A.‚ Schibecia‚ R. (2011).Bridging the gap? A comparative, retrospective analysis of science literacy andinterest in science for indigenous and non-indigenous Australian students.International Journal of Science Education‚ 33(14), 2017-2035.
  34. Mesic‚ V. (2012). Identifying country-specific cultures of physics education: Adifferential item functioning approach. International Journal of ScienceEducation‚ 34(16), 2483-2500.
  35. Milford‚ T., Ross‚ S. P.‚ & Anderson‚ J. O. (2010). An opportunity to betterunderstand schooling: The growing presence of PISA in theAmericas.International Journal of Science and MathematicsEducation‚ 8(3), 453-473.
  36. Mohammadpour‚ E. (2012). A multilevel study on trends in Malaysian secondaryschool students’ science achievement and associated school and studentpredictors. Science Education‚ 96(6), 1013-1046.
  37. Nentwig‚ P., Roennebeck‚ S., Schoeps‚ K., Rumann‚ S., & Carstensen‚ C. (2009).Performance and levels of contextualization in a selection of OECD countries inPISA 2006. Journal of Research in Science Teaching‚ 46(8), 897-908.
  38. Ng, K. T., Lay, Y. F., Areepattamannil, S., Treagust, D. F., & Chandrasegaran, A.L. (2012). Relationship between affect and achievement in science and mathematics in Malaysia and Singapore. Research in Science & Technological Education, 30(3), 225-237.
  39. Olsen‚ R. V.‚ & Lie‚ S. (2011). Profiles of students’ interest in science issues around the world: Analysis of data from PISA 2006. International Journal ofScience Education‚ 33(1), 97-120.
  40. Papanastasioua‚ E. C.‚ Zembylasb‚ M. (2004). Differential effects of scienceattitudes and science achievement in Australia, Cyprus, and the USA.International Journal of Science Education‚ 26(3), 259-280.
  41. Papanastasioua‚ E. C.‚ Zembylasb‚ M., & Vrasidas, C. (2003). Can computer use hurt science achievement? The USA results from PISA. Journal of Science Education and Technology, 12(3), 325-332.
  42. Riegle-Crumb‚ C., Moore‚ C., Ramos-Wada‚ A. (2011). Who wants to have acareer in science or Math? Exploring adolescents’ future aspirations by genderand race/ethnicity. Science Education‚ 95(3), 458-476.
  43. Sabah, S., Hammouri, H., & Akour, M. (2013). Validation of scale of attitudes toward science across countries using Rasch model: Findings from TIMSS.Journal of Baltic Science Education, 12(5), 692-702.
  44. Shannag, Q. A., Tairab, H., Dodeen, H., & Abdel-Fattah, F. (2013). Linking teachers’ quality and student achievement in the Kingdom of Saudi Arabia and Singapore: The impact of teachers’ background variables on student achievement. Journal of Baltic Science Education, 12(5), 652-665.
  45. Sikora‚ J.‚ Pokropek‚ A. (2012). Intergenerational transfers of preferences forscience careers in comparative perspective. International Journal of ScienceEducation‚ 34(16), 2501-2527.
  46. Sikora‚J.‚ &Pokropek‚ A. (2012). Gender segregation of adolescent science careerplans in 50 countries. Science Education‚ 96(2), 234-264.
  47. Sun‚ L., Bradley‚ K. D., & Akers‚ K. (2012). A multilevel modelling approach toinvestigating factors impacting science achievement for secondary school students: PISA Hong Kong sample. International Journal of Science Education‚34(14), 2107-2125.
  48. Wang‚ J., Oliver‚ J. S., & Staver‚ J. R. (2008). Self-concept and science achievement: Investigating a reciprocal relation model across the gender classification in a cross cultural context. Journal of Research in Science Teaching‚ 45(6), 711-725.
  49. Woods-McConney, A., Oliver, M. C., McConney, A., Maor, D., & Schibeci, R. (2013). Science engagement and literacy: A retrospective analysis for indigenous and non-indigenous students in Aotearoa New Zealand and Australia. Research in Science Education, 43(1), 233-252.
  50. Yip‚ D. Y., Chiu, M. M.‚ & Ho‚ E. S. C. (2004). Hong Kong student achievement inOCED - PISA study: Gender differences in science content, literacy skill, andtest item formats. International Journal of Science and Mathematics Education‚ 2(1), 91-106.
  51. Zuzovsky‚ R.‚ Tamir‚ P. (1999). Growth patterns in students’ ability to supply scientific explanations: Findings from the third international mathematics and science study in Israel. International Journal of Science Education, 21(10), 1101-1121.

1