OCEANS 13C : REFERENCES BIBIOGRAPHIQUES

Azetsu-Scott, K., E. P. Jones, I. Yashayaev, and R. M. Gershey, 2003. Time series study of CFC concentrations in the Labrador Sea during deep and shallow convection regimes (1991–2000). J. Geophys. Res., 108(C11), 3354, doi:10.1029/2002JC001317.

Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J. Francey, 2000. Global carbon sinks and their variability inferred from atmospheric O2 and 13C. Science 287, 2467-2470, doi:10.1126/science.287.5462.2467.

Bouttes, N., D. M. Roche, and D. Paillard, 2009. Impact of strong deep ocean stratification on the glacial carbon cycle, Paleoceanography, 24, PA3203, doi:10.1029/2008PA001707.

Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005. Slowing of the Atlantic meridional overturning circulation at 25 N, Nature, 438, 655–657.

Ciais, P., P. P. Tans, J. W. C. White, M. Trolier, R. J. Francey, J. A. Berry, D. R. Randall, P. J. Sellers, J. G. Collatz, and D. S. Schimel, 1995a. Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res. I, 100 (D3), 5051–5070, doi:10.1029/94JD02847.

Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey, 1995b. A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269, 1098-1102, doi: 10.1126/science.269.5227.1098.

Corbière,A., N. Metzl, G. Reverdin, C. Brunet, and T. Takahashi, 2007. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus B, 59 (2), 168-179, doi:10.1111/j.1600-0889.2006.00232.x.

Francey, R. J., C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, R. L. Langenfelds, E. Michel, and L. P. Steele, 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B, 51, 170-193. doi:10.1034/j.1600-0889.1999.t01-1-00005.x.

Global Carbon Project, 2009. Carbon budget and trends 2008. Released on 17 November 2009. [

Gruber, N., C. D. Keeling, and T. F. Stocker, 1998. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the Nothwestern Sargasso Sea. Deep-Sea Res. I, 45, 673-717.

Gruber, N., C. D. Keeling, R. B. Bacastow, P. R. Guenther, T. J. Lueker, M. Whalen, H. A. J. Meijer, W. G. Mook, and T. F. Stocker, 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13 (2), 307-335.

Keeling C. D., S. C. Piper, T. P. Whorf, and R.F. Keeling, 2010. Evolution of natural and anthropogenic CO2 from 1957 to 2003, TellusB (accepted).

Körtzinger, A., P. D. Quay, and R. E. Sonnerup, 2003. Relationship between anthropogenic CO2 and the 13C Suess effect in the North Atlantic Ocean. Global Biogeochem. Cycles, 17, 1005, doi:10.1029/2001GB001427.

Le Quéré, C., et al., 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738, doi: 10.1126/science.1136188.

Le Quéré, C., et al., 2009a. Trends in the sources and sinks of carbon dioxide.Nature Geosciences 2, 831-836,doi: 10.1038/NGEO689.

Lo Monaco C., N. Metzl, A. Poisson, C. Brunet and B. Schauer, 2005. Anthropogenic CO2 in the Southern Ocean: distribution and inventory at the Indo-Atlantic boundary (WOCE line I6), J. Geophys. Res.110, C06010, doi:10.1029/2004JC002643.

Lourantou A., J. V. Lavrič, P. Köhler, J. M. Barnola, E. Michel, D. Paillard, D. Raynaud, and J. Chappellaz, 2010a. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochem. Cycles, 24, GB2015, doi:10.1029/2009GB003545.

Lourantou, A., J. Chappellaz, J.-M. Barnola, V. Masson-Delmotte, and D. Raynaud, 2010b. Changes in atmospheric CO2 and its carbon isotopic ratio during the penultimate deglaciation. Quaternary Science Reviews, 29 (17-18), 1983-1992, doi:10.1016/j.quascirev.2010.05.002.

McNeil, B., R. Matear, and B. Tilbrook, 2001. Does carbon 13 track anthropogenic CO2 in the Southern Ocean. Global Biogeochem. Cycle, 15 (3), 597-613.

McNeil, B., and B. Tilbrook, 2009. A seasonal carbon budget for the sub-antarctic Ocean South of Australia. Marine Chemistry, 115, 196-210.

Metzl, N., 2009. Decadal increase of oceanic carbon dioxide in the Southern Indian Ocean surface waters (1991-2007). Deep-Sea Res. II, doi:10.1016/j.dsr2.2008.12.007.

Metzl, N., 2001. Les Campagnes OISO. Revues METMAR 190, mars 2001, 6-11. [

Murnane, R. J., and J. L. Sarmiento, 2000. Roles of biology and gas exchange in determining the 13C distribution in the ocean and the preindustrial gradient in atmospheric 13C. Global Biogeochem. Cycles, 14, 389-405.

Pierre C., J-F. Saliege, M-J. Urrutiaguer, and J. Giraudeau, 2001. Stable isotope record of the last 500 ky at site 1087 (Southern Cape Basin). in: Wefer G., Berger W.H., Richter C. et al., Proceedings of the ocean Drilling Program, Scientific Results, vol. 175, chapter 12, 1-22.

Quay, P., B. Tilbrook, and C. Wong, 1992. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74-79.

Quay, P., R. Sonnerup, T. Westby, J. Stutsman, and A. McNichol, 2003. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles, 17 (1), 1004, doi:10.1029/2001GB001817.

Quay, P., R. Sonnerup, J. Stutsman, J. Maurer, A. Körtzinger, X. A. Padin, and C. Robinson, 2007. Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the C13/C12 of dissolved inorganic carbon. Global Biogeochem. Cycle, 21, GB1009, doi:10.1029/2006GB002761.

Racapé, V., C. Lo Monaco, N. Metzl, C. Pierre, 2010. Summer and winter distribution of δ13CDIC in surface waters of the South Indian Ocean [20°S-60°S]. Tellus B, doi:10.1111/j.1600-0889.2010.00504.x.

Rickaby, R. E. M., and H. Elderfield, 2005. Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation. G3 Geochemistry Geophysics Geosystems, 6, Q05001, doi: org/10.1029/2004GC000858.

Schlitzer, R. 2002. Ocean Data View,

Schuster, U., A. J. Watson, N. R. Bates, A. Corbiere, M. Gonzalez-Davila, N. Metzl, D. Pierrot, M. Santana-Casiano, 2009. Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep Sea Res. II, 56 (8-10), 620-629, doi:10.1016/j.dsr2.2008.12.011.

Sonnerup, R. E., P. D. Quay, and A.P. McNichol, 2000. The Indian Ocean 13C Suess effect. Global. Biogeochem. Cycles, 14 (3), 903-916, doi:10.1029/1999GB001244.

Sonnerup, R. E., A. P. McNichol, P. D. Quay, R. H. Gammon, J. L. Bullister, C. L. Sabine, and R. D. Slater, 2007. Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter mixing approach (MIX). Tellus B, 59, 303-317.

Spero, H. J., and D. W. Lea, 2002. The cause of carbon isotope minimum events on glacial terminations. Science 296, 522-525.

Tagliabue, A., and L. Bopp, 2008. Towards understanding global variability in ocean carbon-13. Global Biogeochem. Cycles, 22, GB1025, doi:10.1029/2007GB003037.

Tagliabue, A., L. Bopp, D. M. Roche, N. Bouttes, J.-C. Dutay, R. Alkama, M. Kageyama, E. Michel, and D. Paillard, 2009.Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695-706, doi:10.5194/cp-5-695-2009.

Takahashi, T., et al., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622.

Takahashi, T., et al., 2009. Climatological mean and decadal change in surface ocean pCO2 and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554-577, doi:10.1016/j.dsr2.2008.12.009.

Tans, P. P., J. A. Berry, and R. F. Keeling, 1993. Oceanic 13C/12C observations: a new window on ocean CO2 uptake. Global Biogeochem. Cycles, 7 (2), 353-368.

Toggweiler, J. R. (1999), Variation of atmospheric CO2 by ventilation of the ocean’s deepest water, Paleoceanography, 14, 571-588.