Online Data Supplement 1
Table 1. Biological effects of exogenously added and endogenously produced sphingolipids on cardiovascular cells.
When the source of the SL is not exogenous (exo), the stimulus at the origin of its production is indicated.
Biologicaleffect / Sphingolipid
Ceramide / Sphingosine / Sphingosine-1-phosphate / Sphingosyl-
phosphocholine / Lactosyl-ceramide
Proliferation / SMC: exo, SMase, oxLDL 1,2
Lymphocytes: CD28 3 / SMC: PDGF 4 / SMC: exo 5,6,
oxLDL 5
EC: exo 7 / SMC: exo, oxLDL 8
Survival / EC: exo 9-11, TNF 12
Inhibition of proliferation / SMC: exo 13,14, TNF 14,15
EC: exo, TNF 14
Lymphocytes: exo 16
Apoptosis / EC: exo 9,17-23, TNF 18, ionizing radiation 17, oxLDL 22,23
Cardiomyocytes: exo 24,25
T-lymphocytes: exo, Fas/FasL 26 / EC: exo 9
Cardiomyocytes: exo, TNF 27
Neutrophils: exo 28
Cytoskeletal changes / EC: exo 29
Vasodilation/ Inhibition of contraction / Aortic rings: exo 30-32, SMase 33, TNF 34 / Coronary rings: exo 35
Vasoconstriction / Arterial rings: exo 36, SMase 37 / Coronary rings: exo 38 / Microvessels: exo 39
Heart muscle: exo 40 / Microvessels: exo 39
Coronary strips: exo 41
Thrombosis / PAI-1 synthesis by EC: exo 42, TNF 43
Tissue factor synthesis by EC: exo 44
Adhesion / Lymphocytes/EC: exo 45 / EC: TNF 46, VEGF 47 / EC: exo, TNF 48
Neutrophils: exo 49
Chemotaxis/ Migration / EC: exo 10,29,50-57
SMC: exo 58
Neutrophils: exo 59 / EC: exo 60
Abbreviations: EC, endothelial cells; oxLDL, oxidized LDL.
Table 2. Ion fluxes regulated by sphingolipids in cardiovascular cells.
Sphingolipid
/ / /Ceramide / Sphingosine / Sphingosine-1-phosphate / SPC
Ca++ / intracellular / SMC: 37 / SMC: 61,62
Heart: ¯ 63 / SMC: 61,64
EC: 29,65
Myocytes: 66,67 / SMC: 41,61
EC: 35,65,68
Myocytes: 69
L-type / Myocytes: ¯ 70 / Myocytes: ¯ 71,72
Na+ / inward / Myocytes: ¯ 72 / Myocytes: ¯ 73
K+ / inward / Myocytes: 66
muscarinic / Myocytes: 74,75 / Myocytes:
74,75
K+Ca++ / SMC: ¯ 36
Abbreviation: EC, endothelial cell
References
1. Augé N, Andrieu N, Nègre-Salvayre A, Thiers JC, Levade T, Salvayre R. The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J Biol Chem. 1996;271:19251-19255.
2. Augé N, Escargueil-Blanc I, Lajoie-Mazenc I, Suc I, Andrieu-Abadie N, Pieraggi MT, Chatelut M, Thiers JC, Jaffrézou JP, Laurent G, Levade T, Nègre-Salvayre A, Salvayre R. Potential role for ceramide in mitogen-activated protein kinase activation and proliferation of vascular smooth muscle cells induced by oxidized low density lipoprotein. J Biol Chem. 1998;273:12893-12900.
3. Boucher LM, Wiegmann K, Futterer A, Pfeffer K, Machleidt T, Schütze S, Mak TW, Krönke M. CD28 signals through acidic sphingomyelinase. J Exp Med. 1995;181:2059-2068.
4. Coroneos E, Martinez M, McKenna S, Kester M. Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem. 1995;270:23305-23309.
5. Augé N, Nikolova-Karakashian M, Carpentier S, Parthasarathy S, Nègre-Salvayre A, Salvayre R, Merrill AHJ, Levade T. Role of sphingosine-1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem. 1999;274:21533-21538.
6. Tamama K, Kon J, Sato K, Tomura H, Kuwabara A, Kimura T, Kanda T, Ohta H, Ui M, Kobayashi I, Okajima F. Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. Biochem J. 2001;353:139-146.
7. Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamama K, Kuwabara A, Kanda T, Kobayashi I, Ohta H, Ui M, Okajima F. Sphingosine-1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J. 2000;348:71-76.
8. Chatterjee S, Bhunia AK, Snowden A, Han H. Oxidized low density lipoproteins stimulate galactosyltransferase activity, ras activation, p44 mitogen activated protein kinase and c-fos expression in aortic smooth muscle cells. Glycobiology. 1997;7:703-710.
9. Hisano N, Yatomi Y, Satoh K, Akimoto S, Mitsumata M, Fujino MA, Ozaki Y. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. Blood. 1999;93:4293-4299.
10. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI, Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99:301-312.
11. Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM. Sphingosine-1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem. 2001;276:10627-10633.
12. Xia P, Wang L, Gamble JR, Vadas MA. Activation of sphingosine kinase by TNF-a inhibits apoptosis in human endothelial cells. J Biol Chem. 1999;274:34499-34505.
13. Charles R, Sandirasegarane L, Yun J, Bourbon N, Wilson R, Rothstein RP, Levison SW, Kester M. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res. 2000;87:282-288.
14. Lopez-Marure R, Ventura JL, Sanchez L, Montano LF, Zentella A. Ceramide mimics tumour necrosis factor-alpha in the induction of cell cycle arrest in endothelial cells. Induction of the tumour suppressor p53 with decrease in retinoblastoma/protein levels. Eur J Biochem. 2000;267:4325-4333.
15. Johns DG, Webb RC, Charpie JR. Impaired ceramide signalling in spontaneously hypertensive rat vascular smooth muscle: a possible mechanism for augmented cell proliferation. J Hypertens. 2001;19:63-70.
16. Borchardt RA, Lee WT, Kalen A, Buckley RH, Peters C, Schiff S, Bell RM. Growth-dependent regulation of cellular ceramides in human T-cells. Biochim Biophys Acta. 1994;1212:327-336.
17. Haimovitz-Friedman A, Kan C, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994;180:525-535.
18. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK, Schuchman EH, Fuks Z, Kolesnick R. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. 1997;186:1831-1841.
19. Ackermann EJ, Taylor JK, Narayana R, Bennett CF. The role of antiapoptotic Bcl-2 family members in endothelial apoptosis elucidated with antisense oligonucleotides. J Biol Chem. 1999;274:11245-11252.
20. Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999;247:495-504.
21. Escargueil-Blanc I, Andrieu-Abadie N, Caspar-Bauguil S, Brossmer R, Levade T, Nègre-Salvayre A, Salvayre R. Apoptosis and activation of the sphingomyelin-ceramide pathway induced by oxidized low density lipoproteins are not causally related in ECV-304 endothelial cells. J Biol Chem. 1998;273:27389-27395.
22. Harada-Shiba M, Kinoshita M, Kamido H, Shimokado K. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem. 1998;273:9681-9687.
23. Deigner HP, Claus R, Bonaterra GA, Gehrke C, Bibak N, Blaess M, Cantz M, Metz J, Kinscherf R. Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis. FASEB J. 2001;15:807-814.
24. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansky SR. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol. 1997;151:1257-1263.
25. Andrieu-Abadie N, Jaffrézou JP, Hatem S, Laurent G, Levade T, Mercadier JJ. L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB J. 1999;13:1501-1510.
26. De Maria R, Boirivant M, Cifone MG, Roncaioli P, Hahne M, Tschopp J, Pallone F, Santoni A, Testi R. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest. 1996;97:316-322.
27. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. TNFa-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98:2854-2865.
28. Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol. 1999;107:282-293.
29. Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigyi G, Igarashi Y, Ozaki Y. Sphingosine-1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood. 2000;96:3431-3438.
30. Johns DG, Osborn H, Webb RC. Ceramide: a novel cell signaling mechanism for vasodilation. Biochem Biophys Res Commun. 1997;237:95-97.
31. Zheng T, Li W, Altura BT, Altura BM. C2-ceramide attenuates prostaglandin F2a-induced vasoconstriction and elevation of [Ca2+]i in canine cerebral vascular smooth muscle. Neurosci Lett. 1998;256:113-116.
32. Jin JS, Tsai CS, Si X, Webb RC. Endothelium dependent and independent relaxations induced by ceramide in vascular smooth muscles. Chin J Physiol. 1999;42:47-51.
33. Zheng T, Li W, Wang J, Altura BT, Altura BM. Effects of neutral sphingomyelinase on phenylephrine-induced vasoconstriction and Ca(2+) mobilization in rat aortic smooth muscle. Eur J Pharmacol. 2000;391:127-135.
34. Johns DG, Webb RC. TNF-alpha-induced endothelium-independent vasodilation: a role for phospholipase A2-dependent ceramide signaling. Am J Physiol. 1998;275:H1592-H1598.
35. Mogami K, Mizukami Y, Todoroki-Ikeda N, Ohmura M, Yoshida K, Miwa S, Matsuzaki M, Matsuda M, Kobayashi S. Sphingosylphosphorylcholine induces cytosolic Ca(2+) elevation in endothelial cells in situ and causes endothelium-dependent relaxation through nitric oxide production in bovine coronary artery. FEBS Lett. 1999;457:375-380.
36. Li PL, Zhang DX, Zou AP, Campbell WB. Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension. 1999;33:1441-1446.
37. Zheng T, Li W, Wang J, Altura BT, Altura BM. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca(2+)](i) in canine cerebral vascular muscle. Am J Physiol Heart Circ Physiol. 2000;278:H1421-H1428.
38. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Ohta Y, Yasue H. Effects of sphingomyelinase and sphingosine on arterial vasomotor regulation. J Lipid Res. 1996;37:1601-1608.
39. Bischoff A, Czyborra P, Fetscher C, Meyer Zu Heringdorf D, Jakobs KH, Michel MC. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br J Pharmacol. 2000;130:1871-1877.
40. Sugiyama A, Yatomi Y, Ozaki Y, Hashimoto K. Sphingosine-1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. Cardiovasc Res. 2000;46:119-125.
41. Todoroki-Ikeda N, Mizukami Y, Mogami K, Kusuda T, Yamamoto K, Miyake T, Sato M, Suzuki S, Yamagata H, Hokazono Y, Kobayashi S. Sphingosylphosphorylcholine induces Ca(2+)-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett. 2000;482:85-90.
42. Soeda S, Honda O, Shimeno H, Nagamatsu A. Sphingomyelinase and cell-permeable ceramide analogs increase the release of plasminogen activator inhibitor-1 from cultured endothelial cells. Thromb Res. 1995;80:509-518.
43. Soeda S, Tsunoda T, Kurokawa Y, Shimeno H. TNF-a-induced release of plasminogen activator inhibitor-1 from human umbilical vein endothelial cells: involvement of intracellular ceramide signaling event. Biochim Biophys Acta. 1998;1448:37-45.
44. Hirokawa M, Kitabayashi A, Kuroki J, Miura AB. Induction of tissue factor production but not the upregulation of adhesion molecule expression by ceramide in human vascular endothelial cells. Tohoku J Exp Med. 2000;191:167-176.
45. Modur V, Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell inflammatory responses to TNFa. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem. 1996;271:13094-13102.
46. Xia P, Gamble JR, Rye KA, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA. TNF-a induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci USA. 1998;95:14196-14201.
47. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B. Activation in endothelial cells. J Biol Chem. 2001;276:7614-7620.
48. Bhunia AK, Arai T, Bulkley G, Chatterjee S. Lactosylceramide mediates TNF-a-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J Biol Chem. 1998;273:34349-34357.
49. Arai T, Bhunia AK, Chatterjee S, Bulkley GB. Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ Res. 1998;82:540-547.
50. Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH, Kim KW, Kwon YG. Sphingosine-1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 1999;264:743-750.
51. Wang F, Van Brocklyn JR, Hobson JP, Movafagh S, Zukowska-Grojec Z, Milstien S, Spiegel S. Sphingosine-1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. J Biol Chem. 1999;274:35343-35350.
52. English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG. Sphingosine-1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000;14:2255-2265.
53. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest. 2000;106:951-961.
54. Ohmori T, Yatomi Y, Okamoto H, Miura Y, Rile G, Satoh K, Ozaki Y. Gi-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine-1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. J Biol Chem. 2001;276:5274-5280.
55. Okamoto H, Yatomi Y, Ohmori T, Satoh K, Matsumoto Y, Ozaki Y. Sphingosine-1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. Thromb Res. 2000;99:259-265.
56. Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine-1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta 3- and beta 1-containing integrins. J Biol Chem. 2001;276:11830-11837.
57. Panetti TS, Nowlen J, Mosher DF. Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. Arterioscler Thromb Vasc Biol. 2000;20:1013-1019.
58. Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science. 2001;291:1800-1803.