Supplemental Table 4: Gene-disease relationships with subsequent corroborating peer-reviewed publications describing alterations in affected patients
Gene / Corroborating Evidence Reference(s)
Candidate
ACTG23 / Wangler MF (2014), Thorson W (2014), Tuzovic L (2015), Klar J (2015)1-4
CDC42 / Takenouchi T (2015)5
COQ4 / Brea-Calvo (2015), Chung WK (2015)6,7
DNM1 / DDD Study (2014), EuroEPINOMICS-RES Consortium (2014), Nakashima (2015)8-10
ETV6 / Moriyama (2015), Noetzli (2015), Topka (2015), Zhang (2015)11-14
HNRNPK1 / Au (2015)15
ITSN1 / Fukai (2014)16
KCNA22 / Pena (2015), Lal (2015), Syrbe (2015)17-19
LAS1L4 / Butterfield (2014)20
MYH103 / Hamdan (2014)21
PURA / Brown (2013), Hunt (2014), Lalani (2014)22-24
RAD54L2 / Li (2013)25
SETD52 / Pinto (2014), Uddin (2014), Grozeva (2014), Iossifov (2014), Kobayashi (2015), Kuechler (2015), Grozeva (2015)26-32
SNAP253 / (Shen (2014)33
SON1 / Gilissen (2014), Zhu (2015)34,35
ZBTB20 / Shuvarikov (2013), Vuillaume (2013), Cordeddu (2014), Karavitakis (2014), Rasmussen (2014)36-40
ZBTB18 / Rauch (2012), Perlman (2013), de Munnik (2014)41-43
Suspected Candidate
ABCA5 / DeStefano GM (2014)44
DLL4 / Meester (2015)45
DNMT3A / Tatton-Brown (2014)46
EMILIN14 / Capuano (2015)47
IL21R / Kotlarz (2013), Stepensky (2015), Erman (2015)48,49 50
LRFN2 / Thevenon (2015)51
MTOR3 / Baynam (2015), D'Gama (2015), Soden (2014), Mroske (2015)52-55
RYR32 / EuroEPINOMICS-RES Consortium (2014)9
SLIT2 / Hwang (2015)56

1Gene reported as a candidate in the first patient in whom it was identified and as a suspected candidate evidence in the second patient in whom it was identified.

2Reported phenotype affecting same organ system as Ambry patient: Drogemoller (2015), Lal (2015), Syrbe (2015), Li (2013), Kobayashi (2015), and EuroEPINOMICS-RES Consortium (2014).

3Ambry patient included in report: Tuzovic (2015), Mroske (2015).

4Publication describes Ambry patient along with corroborating functional data: Butterfield (2014), Capuano (2015).

1

REFERENCES

1. Wangler MF, Gonzaga-Jauregui C, Gambin T, et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS genetics. Mar 2014;10(3):e1004258.

2. Tuzovic L, Tang S, Miller RS, et al. New Insights into the Genetics of Fetal Megacystis: ACTG2 Mutations, Encoding gamma-2 Smooth Muscle Actin in Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (Berdon Syndrome). Fetal diagnosis and therapy. May 13 2015.

3. Thorson W, Diaz-Horta O, Foster J, 2nd, et al. De novo ACTG2 mutations cause congenital distended bladder, microcolon, and intestinal hypoperistalsis. Human genetics. Jun 2014;133(6):737-742.

4. Klar J, Raykova D, Gustafson E, et al. Phenotypic expansion of visceral myopathy associated with ACTG2 tandem base substitution. European journal of human genetics : EJHG. Dec 2015;23(12):1679-1683.

5. Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: Yet another locus for thrombocytopenia and developmental delay. American journal of medical genetics. Part A. Nov 2015;167(11):2822-2825.

6. Chung WK, Martin K, Jalas C, et al. Mutations in COQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. Journal of medical genetics. Sep 2015;52(9):627-635.

7. Brea-Calvo G, Haack TB, Karall D, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. American journal of human genetics. Feb 5 2015;96(2):309-317.

8. Deciphering Developmental Disorders S. Large-scale discovery of novel genetic causes of developmental disorders. Nature. Mar 12 2015;519(7542):223-228.

9. Euro E-RESC, Epilepsy Phenome/Genome P, Epi KC. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. American journal of human genetics. Oct 2 2014;95(4):360-370.

10. Nakashima M, Kouga T, Lourenco CM, et al. De novo DNM1 mutations in two cases of epileptic encephalopathy. Epilepsia. Nov 27 2015.

11. Moriyama T, Metzger ML, Wu G, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. The Lancet. Oncology. Oct 27 2015.

12. Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature genetics. May 2015;47(5):535-538.

13. Zhang MY, Churpek JE, Keel SB, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nature genetics. Feb 2015;47(2):180-185.

14. Topka S, Vijai J, Walsh MF, et al. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS genetics. Jun 2015;11(6):e1005262.

15. Au PY, You J, Caluseriu O, et al. GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK. Human mutation. Oct 2015;36(10):1009-1014.

16. Fukai R, Hiraki Y, Nishimura G, et al. A de novo 1.4-Mb deletion at 21q22.11 in a boy with developmental delay. American journal of medical genetics. Part A. Apr 2014;164A(4):1021-1028.

17. Lal D, Ruppert AK, Trucks H, et al. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies. PLoS genetics. May 2015;11(5):e1005226.

18. Syrbe S, Hedrich UB, Riesch E, et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nature genetics. Apr 2015;47(4):393-399.

19. Pena SD, Coimbra RL. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clinical genetics. Feb 2015;87(2):e1-3.

20. Butterfield RJ, Stevenson TJ, Xing L, et al. Congenital lethal motor neuron disease with a novel defect in ribosome biogenesis. Neurology. Apr 15 2014;82(15):1322-1330.

21. Hamdan FF, Srour M, Capo-Chichi JM, et al. De novo mutations in moderate or severe intellectual disability. PLoS genetics. Oct 2014;10(10):e1004772.

22. Brown N, Burgess T, Forbes R, et al. 5q31.3 Microdeletion syndrome: clinical and molecular characterization of two further cases. American journal of medical genetics. Part A. Oct 2013;161A(10):2604-2608.

23. Hunt D, Leventer RJ, Simons C, et al. Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability. Journal of medical genetics. Dec 2014;51(12):806-813.

24. Lalani SR, Zhang J, Schaaf CP, et al. Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome. American journal of human genetics. Nov 6 2014;95(5):579-583.

25. Li WQ, Hu N, Hyland PL, et al. Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population. Carcinogenesis. Jul 2013;34(7):1536-1542.

26. Iossifov I, O'Roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. Nov 13 2014;515(7526):216-221.

27. Grozeva D, Carss K, Spasic-Boskovic O, et al. De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. American journal of human genetics. Apr 3 2014;94(4):618-624.

28. Kuechler A, Zink AM, Wieland T, et al. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. European journal of human genetics : EJHG. Jun 2015;23(6):753-760.

29. Uddin M, Tammimies K, Pellecchia G, et al. Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nature genetics. Jul 2014;46(7):742-747.

30. Pinto D, Delaby E, Merico D, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American journal of human genetics. May 1 2014;94(5):677-694.

31. Grozeva D, Carss K, Spasic-Boskovic O, et al. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Human mutation. Dec 2015;36(12):1197-1204.

32. Kobayashi Y, Tohyama J, Kato M, et al. High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain & development. Oct 16 2015.

33. Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. Dec 9 2014;83(24):2247-2255.

34. Zhu X, Petrovski S, Xie P, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genetics in medicine : official journal of the American College of Medical Genetics. Oct 2015;17(10):774-781.

35. Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. Jul 17 2014;511(7509):344-347.

36. Cordeddu V, Redeker B, Stellacci E, et al. Mutations in ZBTB20 cause Primrose syndrome. Nature genetics. Aug 2014;46(8):815-817.

37. Rasmussen MB, Nielsen JV, Lourenco CM, et al. Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes. Journal of medical genetics. Sep 2014;51(9):605-613.

38. Shuvarikov A, Campbell IM, Dittwald P, et al. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Human mutation. Oct 2013;34(10):1415-1423.

39. Vuillaume ML, Delrue MA, Naudion S, et al. Expanding the clinical phenotype at the 3q13.31 locus with a new case of microdeletion and first characterization of the reciprocal duplication. Molecular genetics and metabolism. Sep-Oct 2013;110(1-2):90-97.

40. Karavitakis E, Kitsiou-Tzeli S, Xaidara A, et al. Microduplication 3q13.2q13.31 identified in a male with dysmorphic features and multiple congenital anomalies. American journal of medical genetics. Part A. Mar 2014;164A(3):666-670.

41. de Munnik SA, Garcia-Minaur S, Hoischen A, et al. A de novo non-sense mutation in ZBTB18 in a patient with features of the 1q43q44 microdeletion syndrome. European journal of human genetics : EJHG. Jun 2014;22(6):844-846.

42. Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. Nov 10 2012;380(9854):1674-1682.

43. Perlman SJ, Kulkarni S, Manwaring L, Shinawi M. Haploinsufficiency of ZNF238 is associated with corpus callosum abnormalities in 1q44 deletions. American journal of medical genetics. Part A. Apr 2013;161A(4):711-716.

44. DeStefano GM, Kurban M, Anyane-Yeboa K, et al. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS genetics. 2014;10(5):e1004333.

45. Meester JA, Southgate L, Stittrich AB, et al. Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome. American journal of human genetics. Sep 3 2015;97(3):475-482.

46. Tatton-Brown K, Seal S, Ruark E, et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nature genetics. Apr 2014;46(4):385-388.

47. Capuano A, Bucciotti F, Farwell KD, et al. Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal dominant hereditary connective tissue disease. Human mutation. Oct 14 2015.

48. Kotlarz D, Zietara N, Uzel G, et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. The Journal of experimental medicine. Mar 11 2013;210(3):433-443.

49. Stepensky P, Keller B, Abuzaitoun O, et al. Extending the clinical and immunological phenotype of human interleukin-21 receptor deficiency. Haematologica. Feb 2015;100(2):e72-76.

50. Erman B, Bilic I, Hirschmugl T, et al. Combined immunodeficiency with CD4 lymphopenia and sclerosing cholangitis caused by a novel loss-of-function mutation affecting IL21R. Haematologica. Jun 2015;100(6):e216-219.

51. Thevenon J, Souchay C, Seabold GK, et al. Heterozygous deletion of the LRFN2 gene is associated with working memory deficits. European journal of human genetics : EJHG. Oct 21 2015.

52. Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Science translational medicine. Dec 3 2014;6(265):265ra168.

53. D'Gama AM, Geng Y, Couto JA, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Annals of neurology. Apr 2015;77(4):720-725.

54. Baynam G, Overkov A, Davis M, et al. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. American journal of medical genetics. Part A. Jul 2015;167(7):1659-1667.

55. Mroske C, Rasmussen K, Shinde DN, et al. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities. BMC medical genetics. 2015;16(1):102.

56. Hwang DY, Kohl S, Fan X, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Human genetics. Aug 2015;134(8):905-916.

1