Page 1 of 12

12-1Discovering the role of DNA

Frederick Griffith

Discovered that a factor in heat-killed, disease causing bacteria can transform harmless bacteria into disease causing bacteria.

Griffith has hypothesized that when the live, harmless bacteria and the heat-killed bacteria were mixed together, some factor was transferred from the heat-killed cells to the live cells. That factor might contain a gene with the information that could change harmless bacteria into disease causing ones.

Oswald Avery

Avery and other scientist discovered that DNA is the nucleic acid that stores and transmits genetic information from one generation of organisms to the next.

Alfred Hershey and Martha Chase

They studied viruses, non-living particles which can infect living organisms. Virus that infects and kills bacteria is known as bacteriophage.

They reasoned that if they could determine which part of virus- “protein coat” or “DNA core” – entered the infected cell they will learn whether genes were made of “protein” or “DNA”.

They finally concluded that genetic material of bacteriophage was DNA not protein.

Erwin Chargaff

Discovered that % of Guanine (G) and Cytosine (C) is almost equal in any sample of DNA. Same thing is true for Adenine (A) and Thymine (T).

Chargraff’s rule: A = T and C = G

Rosalind Franklin

Studied structure of DNA molecule using a technique called X-ray diffraction and showed that strains of DNA are twisted around each other in a shape known as helix

James Watson and Francis Crick

They developed the double helix model of the structure of DNA.

They discovered that H2 bonds could form between Adenine - Thymine and Guanine - Cytosine and provide just enough force to hold two strands together.

This principal called base-pairing explained Chargaff’s rule.

The structure of DNA

DNA= Deoxyribonucleic Acid

nucleic acid is a polymer

nucleotide is a monomer

Shape of DNA – double helix (two spirals – looks like a twisted ladder)

Gene is a segment of DNA that codes for proteins.

They carry information from one generation to next

determine heritable characteristics

Replicated easily.

DNA is a long molecule made up of units called nucleotides.

Each nucleotide is made up of three basic parts

  1. 5-carbon sugar called deoxyribose
  2. phosphate group
  3. Nitrogenous base

There are 4 kinds of nitrogenous bases in DNA.

A (Adenine)

T (Thymine)

C (Cytosine)

G (Guanine)

Two of the bases Adenine and Guanine – they belong to the group purines.

Two bases known as Cytosine and Thymine are known as pyrimidines

12-2 DNA & Chromosomes

Prokaryotes – single circular DNA – referred to as chromosome

Eukaryotic – DNA inside nucleus in the form of number of chromosomes which varies from one species to next.

Eukaryotic chromosome contains DNA and protein tightly packed together to form chromatin in which DNA is coiled around proteins called as histones.

DNA and histone together form a nucleosome.

DNA replication

Each strand of DNA double helix has all the information needed to reconstruct the other half by base pairing hence the strands are said to be complementary.

Before cells divides, it duplicates its DNA in a copying process called a replication.

During replication, DNA molecule separates into two strands.

Each strand of double helix serves as a template (model for the new strand).

Two complementary stands are produced following the rules of base pairing.

DNA replication is called out by a series of enzymes.

Enzyme Helicase -

Enzyme that unzips a molecule of DNA

Hydrogen bonds between base pairs are broken.

Two strands of molecule unwind

Each strand serves as a template for attaching complementary bases.

The result is two DNA molecules identical to each other and to the original

Enzyme DNA polymerase –

polymerizes individual nucleotides (using base pair) to produce DNA

Proof reads new DNA strand. If something is incorrect, corrects it.

12-3 RNA and Protein synthesis

Gene is a segment of DNA that codes for proteins

-Proteins are made in the ribosomes.

-DNA cannot leave nucleus

-DNA needs a messenger to get its message to ribosomes.

-It uses RNA

Structure of RNA

-Long chain of nucleotides (5 carbon sugar, phosphate group, nitrogenous base)

-Sugar is Ribose

-Single stranded

-Bases – A, C, G, U (Uracil instead of Thymine)

-Can leave nucleus

-RNA is like a disposable copy of a segment of DNA

Most of RNA molecules are involved in protein synthesis. The assembly of amino acids into proteins is controlled by RNA.

Types of RNA

-Messenger RNA (mRNA) – carries DNA’s message

-Ribosomal RNA (rRNA) – mix with a few proteins to make a ribosome

-Transfer RNA (tRNA) – carries amino acid to the ribosome

Recipe Chef Sous chef

Transcription – RNA molecules are produced by copyingDNAsequence into a complementary RNAProcess of transcription

  1. Enzyme RNA polymerase binds to DNA and separates DNA strands
  2. It uses one strand of DNA as template to assemble nucleotides into a strand of RNA according to base-pairing

C->GG->CT->AA->U (there is no RNA ‘T’)

  1. Where to start and stop making a RNA copy of DNA?

RNA polymerase will bind only to region of DNA known as promoter (which has specific base sequence/ signals that indicates where to bind to make RNA)

  1. RNA strand detaches and leaves nucleus
  2. DNA strand rejoin, unchanged

RNA editing

Many RNA molecules have sections called “introns” or intervening sequences that must be removed before RNA becomes active.

The remaining RNA, the “exons” or expressed sequences are spliced together.

Then a cap and a tail are added to form final RNA molecule.

Genetic code

Protein is a polymer. Amino acid is a monomer of protein.

There are 20 types of amino acids in living organisms.

The order in which these 20 amino acids are joined to form polypeptide chain determines type of protein and its properties.

The language of mRNA instructions is called as genetic code.

The genetic code is read as 3 bases at a time.

3 nucleotides = 1 codon = 1 amino acid

A codon consists of 3 consecutive nucleotides that specify a single amino acid.

RNA has 4 bases A, U, G, C – that code for 20 amino acids

4 bases in RNA hence 64 possible codons (each one has 3 bases).

Some amino acid can be specified by more than 1 codon. E.g. leucine, Argenine

AUG – Methionine or start codon for protein synthesis.

3 stop codons – do not code for any amino acid.

Translation

Decoding of mRNA message into polypeptide chain (protein) is known as translation.

  1. Before translation mRNA must be transcribed from DNA in nucleus and released in to cytoplasm.
  2. Translation takes place in ribosome.
  3. mRNA attaches to a ribosome
  4. Sequence of nucleotide bases in mRNA serves as instruction for order to put amino acid.
  5. The ribosome reads the first codon but does not know which amino acid to match that codon.
  6. That’s the job of tRNA. Each tRNA molecule has an amino acid attached to one end and 3 bases (anticodon) at the other end. Anticodon is complementary to MRNA codon.
  7. The ribosome reads next codon. tRNA anticodon is matched with it.
  8. The ribosome forms a peptide bond between 2 amino acids. Ribosome releases tRNA which goes off to get another amino acid.
  9. The polypeptide chain continues to grow until ribosome reaches stop codon.

Protein gets detached.

12-4 Mutations

The change in the DNA sequence that affects genetic information.

Gene mutation - result from changes in one nucleotide (point mutation) or several nucleotides in a single gene.

  1. Point mutation that substitute one nucleotide for another

- Changes one amino acid in a protein.

  1. Point mutation that inserts or deletes nucleotide – frameshift mutation

- shift the reading frame of genetic message

- affect every amino acid that follows the point of insertion or deletion.

Chromosomal mutation - involve changes in the number or structure of whole chromosome.

Deletion – loss of all or part of chromosome

Duplication – segment of chromosome is repeated.

Inversion – part of chromosome becomes oriented in the reverse of it’s usual direction

Traslocation – part of one chromosome breaks off and attaches to another, non homologous chromosome.

12-5 Gene regulation

Prokaryotic Gene Regulation

A group of genes that operate together is known as an operon.

Prokaryote - Ex - bacterium E. coli has three genes that are turned on or off together.

Three genes control lactase gene (in order for the bacterium to be able to use the sugar lactose as a food) are called as lac operon.

Why must E. coli turn on the lac genes in order to use lactose?

Lactose is a compound made up of glucose and galactose.

The bacterium takes lactose and breaks the bond between glucose and galactose, for which it needs proteins/enzymes coded by the genes of the lac operon.

If the bacterium is grown where lactose is the only food, it must transcribe these genes and produce these proteins. The lac operon is turned on by the presence of lactose.

If grown on another food source, such as glucose, it would have no need for these proteins.

The lac operon is then turned off by repressors

Regulatory regions:

  1. promoter (P) - RNA polymerase binds and then begins transcription.
  1. Operator (O) - when lac repressor binds to the O region, it turns the operon “off” by preventing transcription of its genes.

If lactose is present, lactose binds to the repressor and removes it. Now RNA polymerase can bind to the promoter and transcribe the genes of the operon.

Eukaryotic Gene Regulation

Most eukaryotic genes are controlled individually and have regulatory sequences that are much more complex than prokaryotic genes.

TATA box

-30 base pairs long,

-containing a sequence of TATATA or TATAAA

-before the start of transcription

- found before many eukaryotic genes

-help position RNA polymerase by marking a point just before the point at which transcription begins.

Enhancer sequences –

-some DNA-binding proteins enhance transcription by opening up tightly packed chromatin.

-Some proteins attract RNA polymerase.

-Some proteins block access of RNA polymerase to genes

All of the cells in a multicellular organism carry the complete genetic code in their nucleus. But only a tiny fraction of the available genes needs to be expressed in the appropriate cells of different tissues throughout the body.

The genes that code for liver enzymes, for example, are not expressed in nerve cells. Keratin, an important protein in skin cells, is not produced in blood cells.

Regulation and Development

The cells don't just grow and divide during embryonic development; they also undergo differentiation, meaning they become specialized in structure and function.

A series of genes, known as the hox genes, tell the cells of the body how they should differentiate as the body grows.

A mutation in one of these “master control genes” can completely change the organs that develop in specific parts of the body.