GREEN MIDTERM TEST ANSWERS

1. Face 1 = (2,-1) Face 2 = (-3, -1) Face 3 = (-1,0)

Face 4 = (-1,1) Face 5 = (0, 1) Face 6 = (1,0)

2. A) in hkl, h + k + l = 2n + 1 => I-centered cell

in 0kl, h = 2n + 1 => b-glide perpendicular to a

in h0l, l = 2n + 1 => c-glide perpendicular to b

in hk0, h = 2n + 1 => a-glide perpendicular to c

B)  Ibca

C)  mmm => orthorhombic

3. C48H48Cl4Cu2N10O16 MW = 1289.84 g/mol

V = abc sinb = (22.3883)(9.5978)(25.4833)sin98.985o = 5408.62 Å3

a) r = ZM/VN Z = rVN/M = (1.599 gcm-3)(540.862)(6.022)/(1289.84 g/mol)

Z = 4 molecules / cell

b) a* = 1/a sinb = 1 / (22.3883 sin98.985o) = 0.0452211 Å-1

b* = 1/b = 1/9.5978 = 0.1041905 Å-1

c* = 1/c sinb = 1 / (25.4833 sin98.985) = 0.0397289 Å-1

a* = g* = 90o ; b* = 180 - b = 180 – 98.985 = 81.015o

c)  The angle between a & a* = the angle between c & c*

Therefore, (98.985o – 81.015o) / 2 = 8.985o

d) d*100 = a* = 0.0452211 Å-1

Therefore, 1.54178Å(d*100) / 2 = sin q100 = 0.03486049

q100 = sin-1 (0.03486049) = 1.998o

d*222 = [(2x0.0452211)2+(2x0.1041905) 2+(2x0.0397289) 2+

2(2)(2)( 0.0452211)( 0.0397289)cos81.015]1/2

d*222 = (0.0601613) 1/2 = 0.24528 Å-1

Therefore, 1.54178 Å(d*222) / 2 = sin q222 = 0.189082

q222 = sin-1 (0.190617) = 10.899o

5. A = S fi cos a

A = (47.7 cos -18.23o) + (31.89 cos 154.78o) + (49.7 cos -213.26o)

A = (45.282 - 28.85 -41.559) = -25.127

B = S fi sin a = (47.7 sin -18.23o) + (31.89 sin 154.78o) + (49.7 sin -213.26o)

B = -14.993 + 13.588 + 27.257 = 25.852

│F│ = (A2 + B2) 1/2 = [(-25.127) 2 + (25.852) 2] ½ = 36.051

a = tan-1(B/A) = tan-1(25.852/-25.127) = tan-1(-1.029) = -45.82o

Since A = - and B = +, the resultant sum should be in the 2nd quadrant.

Therefore, a = tan(180o + (-45.82o) = 134.19 o, which is in the 2nd quadrant.

4. a) Cu1 at x,y,z 0.8135 0.08926 0.9610

Cu1A has to be at x, ½-y, z 0.8135 0.41074 0.9610

Therefore, the difference between these is: 0 0.32148 0

b) Bond distance = {[Dy (b)]2}1/2 = (0.32148)(41.247} = 13.26 Å

c) We have to calculate the Cu1-C19 distance:

C19 0.82402 0.2500 1.28101

Cu1 0.8135 0.08926 0.9610_

Delta: 0.01052 0.16074 0.32001

Bond distance = [(Dx a)2 + (Dy b)2 + (Dz c)2+…………..]1/2

= {[(0.01052)(8.5404Å)]2 + [(0.16074)(41.247 Å)]2

+ [(0.32001)(8.5889Å)

+ (2)(8.5404)(0.01052)(8.5889)(0.32001)cos]118.18]}1/2

Bond distance = 7.161 Å

d) Bond angle: let C19 be atom A, Cu1 be atom B, and Cu1A be atom C

Bond angle: Cu1-C19-Cu1A:

Bond angle q = cos-1[(AB)2 + (AC)2 – (BC)2] / 2(AB)(AC)

q = cos-1[(7.161)2 + (7.161) 2 - (13.26)2] / 2(7.161)(7.161)

q = cos-1(-0.714395)

q = 135.59o