Traceelements inbloodcollected frombirdsfeedingin theareaaround Do˜nanaNational Parkaffected bythe toxicspillfromtheAznalc´ollarmine

V.Benitoa,V.Devesaa,O.Mu˜noza,M.A.Su˜nera,R.Montoroa,*,R.

Baosb,F.Hiraldob, M.Ferrerb,M.Fern´andezc,M.J.Gonz´alezc

aInstitutodeAgroqu´ımicayTecnolog´ıadeAlimentos,IATA,(CSIC),ApdoCorreos73,46100Burjassot,Valencia,Spain

bEstaci´onBiolo´gicadeDo˜nana,Pabellondel Per´us/n(CSIC),Se illa,Spain

cDepartamentodeI.A.yQu´ımicaAmbiental,IQOG,CSIC,JuandelaCiera,3,28006-Madrid,Spain

Abstract

Along-term monitoring plan wasestablished to study ifbird populationsaround Do˜nana National Park were affected bythetoxicspillfromtheAznalc´ollarmine.TheconcentrationsofZn,Pb,As,Cu,Sb,Co,TlandCdinthe bloodof11birdspeciesfeedingintheareaweredetermined.Theparameterswhichmostaffecttheaccumulationof trace elements inthe birds studied are, firstly,species and, secondly, trophic position, sex,daysofexposure and weight.Insomeindividuals,ZnandCuoccurred athigher levelsthan thereferencevaluesforcontaminatedareas.

Concentrations ofPbandCdinaconsiderable number ofindividualswerehigherthanthosefoundinbirdsfrom uncontaminatedareas. The present data, together withthe lackofdata onblood metal concentrationprior tothe spill,donotofferanyconclusiveevidence oftheinfluence ofthespillonavianbloodmetal concentrations.

Keywords: Acidminewaste;Heavymetals; Arsenic; Do˜nanaNational Park; Blood;Birds

*Correspondingauthor. Tel.:+34-963900022;fax:+34-963636301.

E-mailaddress:oro.

8

1.Introduction

On the 25April 1998,adam retaining 5Hm3 of pyritic sludge gave way and released heavy metals totheGuardiamarRiver.Themostabun- dantmetals,considered highlytoxicforwildlife, were Zn, Pb,As,Cu,Sb,Co,Tland CdŽWood,

1974..Although great efforts havebeen made to

term monitoring plansamplinglivinganimalswas also established to identify the sublethal effects thatthiscontaminationepisodemayhaveonindi- vidualbirdsandfuture birdpopulations.

Toachievethese aims,concentrationofmetals inbloodweremeasured sincebloodreflectsthe current status of a toxic substance in the body and isincreasingly used inwildlifesampling pro-

remove the sludge,soilshavebeen contaminated

grams

ŽHenny and Meeker, 1981.. It is known

withvariable amounts ofthese elements ŽSimon et al., authors in this issue.. The contaminated surfacerepresentsarelativelysmallpercentageof

theprotectedarea ofDo˜nanawetlands,butsome of the affected locations are important feeding

andbreedinggroundsfor nestingandwintering waterfowl,thusasignificantpart ofthese popula- tions could be affected by the contamination. Land birds may not be affected to the same extentas aquaticbirds,sincetheirfeedingarea generally does not extend into the contaminated part, although species that coverlarge distances, suchassomeraptors, maybeaffected.

TheDo˜nanaNational Park isaBiosphere Re- serveŽComisi´ondeExpertos, 1992.andthewhole area is consideredto be of special interest for species ofwaterfowl ŽGarc´ıa etal.,1989;M´a˜nez,

1991; Garc´ıa-Novo, 1995..Do˜nanaisabreeding ground andwinteringarea forspeciessuchasthe

that theconcentrationofCdandPbinbloodisa goodshort-term andlong-termindicator ofcon- taminationŽGarc´ıa-Fern´andez etal.,1995,1997.. AsfarasAsandCoareconcerned, there isno evidenceifbloodconcentrationofthese elements represents ashort-oralong-termexposure,al- though inhumans arsenic levelsinblood havea short biological half-life and reflect recent expo- sure ŽCornelisetal.,1995;NicolasandDescotes,

1996..Moreover, there is alsoagreatdifference betweenorganismsintheretention ofarsenicin erythrocytes ŽEisler, 1994..Large amounts ofZn are initiallystored inthe human liver,butitalso tendstoaccumulateinredbloodcellsandbones, whilstcopper isinitiallybound toserum albumin and later more firmly bound to alpha-cerulop- lasmin,theliverandbonemarrowbeingthemain copper storage organs. Trivalent forms of anti- mony generally concentrate in red blood cells,

Spanish imperial eagle

ŽAquila adalberti., con-

whilepentavalentcompoundsarefoundinplasma.

sidered inthe EuropeanUnion tobeone ofthe

ŽHammondandBeliles,1980..

birds in greatest danger of extinction

ŽFerrer,

The toxic effects of the various heavy metals

1993..Inaddition,somesedentary birds,andbirds

that winter inDo˜nana are hunted inneighbour- ingareas, and this mayprovide alink bywhich

contaminationcouldreach human populations.

andarseniconbirdshavebeendocumented.Lead cancause birdmortality ŽRamoetal.,1992;Ma- teoetal.,1998.,havesublethal effectsŽOchiaiet al., 1992., or a negative effect on reproduction

The Scientific Research Council

ŽCSIC.

was

ŽBurger,1995.,depending onthedose.Highdoses

instructedbytheSpanishGovernmenttomonitor theeffectthatcontaminationbyheavymetalsand arsenic mayhaveonwildlifeintheecosystemsof Do˜nana. For the reasons stated above, and be- cause aquatic birds are consideredgood indica- torsofcontaminationinwetlandssincetheyaccu- mulate metals and As in various organs, they were included among the various groups ofani-

ofCdcancausedeath, andsublethal effectshave beendescribedin birdsatlowerconcentrations ŽBokori etal.,1995..Arsenic,especiallyinits inorganicforms,canbringaboutthedeathof an individual,producesublethaleffectsand affect reproductionŽEisler, 1994..There are noknown studiesontheeffectsofSb andTlonbirds,but sublethal effects have been described in both

malsstudied. Intheshort term, theaimofmoni-

adult rats and fetuses

ŽAlkhawajah et al., 1996;

toring wasto determinewhether contamination by metalsaffectedsummer avianmortality ŽHern´andez etal.,authors inthisissue.. Along-

Barroso Moguel etal.,1996;Albiser etal.,1997; Poonetal., 1998..Zn,CuandCoareessential elements forbirds, but theycanbetoxicinhigh

concentrations,andvarioussublethal effectshave

whichincludes species, number ofindividuals of

been described

ŽRamey and Sterner, 1995;

each speciessampled, position inthe foodchain,

Mart´ınezandD´ıaz,1996;Ewingetal.,1998.. Moreover, when studying the effects of an

episodeoflocalcontaminationonvariousspecies, onemustbearin mindthattherearenumerous sourcesofindividualvariation. Amongthosemost

weight,daysofexposuretothespill,sex, age, samplingpoint andsocialandecologicalinterest. Theweightsassignedtoeachoneof thestudied speciesandintroducedintheanalysisascontinu- ousvariable weretaken directlyfromthebibliog-

frequently quoted are: physiological characteris-

raphy

ŽCramp and Simmons, 1977, 1980, 1983,

ticsrelated toratesofabsorptionandassimilation ŽPeterle,1991.;trophic position andweightŽPain and Amiard-Triquet,1993;Garc´ıa-Fern´andez et

1985.,selecting the weightofindividuals belong- ingtothe analysed species,sampled inthe same

seasonŽspring—summer.inplacesnexttoDo˜nana.

al., 1997.; sex

ŽFinley et al., 1976., and age

Days of exposure were calculated as the differ-

ŽGarc´ıa-Fern´andez et al.,1996,1997..Moreover, the distance of breeding grounds from the spill

and the length of time that birds have been exposed to its effects may affect the degree of aviancontamination.

The aim of this paper is to present the first data on metal concentrations in the blood of birds found inDo˜nana during the breeding sea- son,andtodeterminewhether these levelscorre- spondtoareas contaminatedbyheavymetalsand arsenic ortouncontaminatedareas. Finally,Gen- eralised Linear ModelsŽNelderandWedderburn,

1972;McCullagh andNelder, 1983.wereusedto determinetheimportancethatthevarioussources ofvariationmentioned abovemayhaveinex- plainingthecontaminationobserved inindividual specimens.

2.Materialsandmethods

2.1.Samplingprocedure

The birds initially included in the sampling mainlyfed inthe wetlands, since itwasunlikely thatother birdswouldbeaffected by thiscon- tamination episode. Sufficient species were se- lected to represent the various trophic levels foundinthewetland birdcommunity ofDo˜nana. Breeding hadalreadystarted, andthusthecollec- tion ofsamples to some extent wasconditioned. Formanyofthespeciesselected significantnum- bersofsampleswerenotobtained, andresultsfor

encebetween thedates ofcapture andtoxicspill. Thelocations ofthe sampling stations are shown inFig.1.

Amolecular techniquebased onthe structural difference ofsexchromosomes wasusedtode- termine the sexofthe specimens captured.Un- likemammals,malebirdshavetwo identicalsex chromosomesŽZZ.,whereas thefemales are het- erogameticŽZW.ŽLesselsandMateman,1996.; consequently, theDNAsequences oftheWchro- mosome belong exclusivelyto females. Griffiths etal.Ž1996.described agene ŽCDH-W.whichis foundintheWchromosomeinfemales, withthe exceptionof ostrichesandrelated species;this knowledge wasapplied and the specimens were sexedby meansofPolymerase ChainReaction ŽPCR..

Whendrawingup thesamplingprogram,we attemptedtosample aparticularspeciesonvari- ous datesandatvariousdistancesfromthearea directlyaffected by thespill.Thelatter wasim- practical,sincemanyofthespeciesliveincolonies andonlyasinglecolonywasaccessibleduringthe sample collection period, thus itwasnot possible toconsiderthisvariablewhensourcesofvariation werestudied.

Thegreater flamingoŽPhoenicopterusruber.was

included inthe sampling although itsclosest breeding colony is135km from the site of the spill because monitoring ofmarked birds re- vealed that they frequently visitDo˜nana to feed duringthebreeding periodandthewinterseason. The specimens werecapturedinthe nest Žpul-

these species are thereforenot included in this

lets.

or in their feeding grounds

Žyoung birds;

paper. ThespeciesforwhichtheconcentrationofmetalsinbloodwasanalysedaregiveninTable1,

adults., usingvarioustrapping methods. Foreach specimen,2mlofbloodwastakenfromtheradial

Fig.1.Mapoftheareastudiedandthesamplingstations.

1.Dehesa deAbajo / 6.LaAlgaida. / 11.ElPinar deSanAgust´ın.
2.Matasgordas / 7.Ca˜nodeGuadiamar. / 12.ElPuntal.
3.Ca˜nodelaEscupidera. / 8.Maril´opez. / 13.Odiel, Ayamonte. Huelva.
4.Veta Hornitos.
5.LaFAO. / 9.Veta LaPalma
10.LasPajareras. / 14.Fuente delaPiedra. M´alaga.

Table 1

CharacteristicsofwaterfowlspeciesinDo˜nanaNational Park studied inthisworka

SpeciesIndividualsTrophiclevelWeightb

Days ofSexAgeSamplingpointSE

sampled

Žg.

exposurec

ŽindividualsIntereste

sampled at

eachlocation.d

PodicepscristatusŽgreat7Fishpredator9201067N.K.7Žpull.

crested grebe

3Ž7.

Protected

ArdeacinereaŽgreyheron.

20Fishandcrayfish150543—113f

predator

3M;14F;3N.K.17Žpull.; 3ŽN.K..

4Ž4.;10Ž14.;12Ž2.

Protected

CiconiaciconiaŽwhitestork.

30Fishandcrayfish35711616M;14F30Žpull.

predator

1Ž30.

Protected

Platalea leucorodiaŽspoonbill. / 30 / Fishandcrayfish / 1960 / 39
30—87f / 15M;12F;3N.K. / 28Žpull.;2Žadult. / 4Ž1.;10Ž15.;13Ž14. / Protected
predator
PlegadisfalcinellusŽglossy / 10 / Invertebrate / 557 / 25 / 4M;6F / 10Žpull. / 5Ž10. / Protected
ibis. / predator
PhoenicopterusruberŽgreater / 20 / Invertebrate / 3579 / 111 / 14M;6F / 20Žpull. / 20Ž14. / Protected
flamingo.
AnasplatyrhynchosŽmallard. / 8 / predator
Omnivorous / 1216 / 65—107f / 2M;1F;6N.K. / 3Žpull.; 5Žadult.; / 4Ž2.; 7Ž1.;8Ž2.; / Consumption
AnasstreperaŽgadwall. / 5 / Omnivorous / 659 / 74—86f / 3M;2F / 1ŽN.K..
4Žpull.; 1ŽN.K.. / 9Ž4.
4Ž1.;8Ž4. / Consumption
AythyaferinaŽpochard. / 10 / Omnivorous / 849 / 82—88f / 10N.K. / 10Žpull. / 4Ž1.;8Ž9. / Consumption
MiliusmigransŽblackkite. / 25 / Birdandmammal / 807 / 45—78f / 13M;7F;4N.K. / 23Žpull.; 2Žadult. / 1Ž2.;2Ž9.; 6Ž3.;11Ž2.; / Protected
predator / N.K.Ž9.
LaruscachinnansŽyellow- / 11 / Carrion consumer / 971.5 / 46—108f / 2M;9N.K. / 10Žpull.;1ŽN.K.. / 9Ž7.;N.K.Ž3. / Protected

leggedgull.

aM,male; F,female;N.K., not known;Pull, pullet.

bThe weightsquoted are typicalweightsreferredbyCramp and Simmons Ž1977,1980,1983,1985..

cDays ofexposurewere calculatedasthe difference betweencapturedateand toxic spill date.

dSamplingpoint:see Fig. 1tolocatethe samplingpointon the map.

eSEInterest:Social and EcologicalInterest.

fDays exposureintervalinwhich the captureswere carriedout.

vein. Thespecimenscollectedweremarkedwith plastic rings that could be identified individually atadistance toallowmonitoring ofindividualsin thefuture.

2.2.Treatmentofsamples

Blood was kept frozen from collection to preparation.BloodŽ1ml.wastaken andadded to

9mlof0.5%Žw/v.Triton X-100ŽMerckFarma y

Qu´ımica,S.A.,Valencia, Spain..Thesolution was mechanically shaken for 30 s and then shaken

vigorouslyinanultrasoundbath for30min.The mixture wascentrifuged at2000rev.min—1 for5 min.Aliquots of1mlweretaken andtheprecipi- tate wasdiscarded. The aliquots obtained were

glassware,Eppendorf vials,anddisposable sam- plingcupsweretreatedwith10%nitricacidfor1 week, and then rinsed three times with Milli-Q water, before use. Between uses, glassware was placedin10%nitricacidfor24h.Method detec- tionlimitswere:AsŽ0.006mgl—1.,CdŽ0.0001mg l—1.,CoŽ0.001 mgl—1.,CuŽ0.013 mgl—1.,PbŽ

0.002mgl—1.,SbŽ0.002mgl—1.andTlŽ0.002mg l—1..Theprecision asmeasuredby triplicate anal- ysis,expressed asthe relative standarddeviation ŽR.S.D..wasasfollows:As4%,Cd5%,Co5%, Cu2%,Pb4%,Sb 3%andTl3%.Therangeof recoveryevaluated byspikingbloodsamples with eachoftheelements was85—115%.

Accuracy for Pb and Cd was established by analysing a certified referencesample ofbovine

stored at —20°C prior to elementalanalysis. An

blood ŽCRM-195.

from the Institute for Refer-

MSE Minor centrifuge

ŽPacisa, S.A., Madrid,

ence Materials andMeasurementsŽIRMM..The

Spain., aVortexMS2Minishaker

ŽIKA

values found

ŽPb: 413±17; Cd: 5.40±0.69 pg

Labortechnik,MerckFarma y Qu´ımica,S.A., Barcelona, Spain.andaSelecta UltrasonsPbath ŽJ.P.Selecta, S.A.,Barcelona, Spain.wereused.

l—1.overlappedwith the interval found for the certified values ŽPb: 416±9;Cd: 5.37±0.24pg l—1.. For As, Cu and Co, a CRM sample or TORT-2 Žlobster hepatopancreas,Canada Natio-

2.3.DeterminationofAs,Cd,Co,Cu,Pb,SbandTl

nal Research Council, CNRC.

was used. The

The determinationofAs,Cd, Co, Cu, Pb, Sb andTlinwholebloodsamples wasaccomplished by graphite furnace Zeeman-effectatomicab- sorption spectroscopy. APerkin-ElmerŽPE.lon- gitudinal ACZeemanŽAAnalyst 600.atomic ab- sorption spectrometer, equipped withatrans- versely heated graphite atomiser and a built-in fully computer-controlled AS-800 autosampler

values obtainedfor these elements inour CRM

analyseswereconsistent withthecertified values.

2.4.Determinationofzinc

InthedeterminationofZnbyflow injection- flame-atomic absorption spectrometry,a PE Model3300atomicabsorption spectrometer equipped withaPEflowinjection analysissystem

ŽPerkin Elmer Hispania, S.A., Madrid, Spain.,

for atomic spectroscopy

ŽFIAS-400.

and an au-

andPEpyroliticgraphitecoatedtubeswith an inserted L’vovplatform were used. Calibration was performed with the method of Additions

tosampler ŽPEAS-90.wereused.Precisionwas established byanalysisofanA-13referencesam- pleofanimalbloodobtainedfromtheInternatio-

StandardCurve. Deionised water

Ž18 M cm.

nalAtomicEnergyAgencyŽIAEA..Therecorded

obtainedwithaMilli-Q water system ŽMillipore

values

Ž13.6±0.6 pg g—1.

overlappedwith the

Inc., Millipore Ib´erica, Madrid, Spain. wasused forthepreparationofreagents andstandards.All

chemicals including standardsandsolutions were ofpro analysi quality or higher: nitric acid Žp=

certifiedinterval forthiselement Ž13±1pgg—1.. Theevaluationof Znrecoveryinspikedblood sampleswas95%.Themethod detection limitfor thiselement was0.23mgl—1.

1.38gml—1.,1000mgl—1

standardsofAs,Cd,

Co,Cu,Pb,Sb,Tl,palladium powder,magnesium nitratehexahydrateand ammoniumdihydrogen phosphateas matrix modifiers ŽMerck Farma y

2.5.Statisticalanalysis

AGeneralisedLinear Model ŽGLM., ŽNelder

Qu´ımica, S.A., Valencia, Spain.

were used. All

andWedderburn, 1972; Dobson,1983; McCullagh

andNelder,1983.wasusedtoderiveamathemat- icaldescriptionofindividualvariations inconcen- trations ofmetalsandarsenicinblood.Modelsof thiskindare used whendeterminingthe individ- ualeffectofseveralvariablesonagiven pheno- menon ŽDon´azar et al.,1993;Bustamante,1997;

Forero et al., 1999; Tella et al., 1999.. Gener-

alisedLinear Modelscanbeconsidered asa particularcaseofmultiplelinearregression.Three componentsmustbedefinedforaGLM:alinear predictor,anerror function andalinkfunction. A linear predictorŽLP.isdefined asLP=a+b*x

+c*x+... where a is a constant to be esti- mated; b,c, ... are parameterstobeestimated

different models which mostly converged into a singlemodel orasetofmodelsfromwhichsimi- larrelationshipscouldbeinferred.

Theexpression ofthemodelbecomes:

[metal]=ea+b x+c x+... Ž1.

3.Results

Table 2showsthetotal bloodmetal content of thespeciessampled,andTable3gives theper- centage ofindividualsofeachspecieswithhigher

from observed data; and x1, x2

... are the ex-

levelsofmetals than those reportedinthelitera-

planatory variables. The error function depends

ture for birds in uncontaminatedareas

ŽPb, As

on the nature ofthe data. The concentration of

and Cd.

or contaminated areas

ŽCu and Zn..

the various metals in blood wasln-transformed and anormal error distributionwasassumed for the models. An identity link was used as link function. In this case the model does not differ fromamultiplelinearregressionwith aln-trans- formed-dependentvariable.Theexplanatory vari- ablesconsideredwereintroducedinto the model asfactors Žspecies, sex,trophic position. orcont- inuousvariablesŽdaysofexposure tothespilland weight.. Although age isrelevant as a factor of

Data forbirdsinuncontaminatedareas werenot found for the latter elements. Reference values were not found for Co, Sband Tllevelsin the bloodof birds.Foreachelement, inthecaseof measurementsbelowthelimitofdetection ŽLOD., the valueintroducedinthe databasewasthat of LOD.

3.1.Zinc

individual variation

ŽGarc´ıa-Fern´andez et al.,

The zinccontents found inthe species studied

1996,1997.,itwasnot included inthe statistical

analysis since most of the individuals sampled werepulletsŽTable1..Wefittedeachexplanatory variable tothe observations usingthe GLM pro- gramŽBaker, 1987.followingamodificationofa traditional forwardstepwiseprocedure.Each variable wastested in turn for significance, and

ŽTable2.variedbetween 0.3and8.6mgl—1.The

species that presentedthe highest mean levelof this metal wasthe gadwall,followed bythe yel- low-leggedgull.The mean value found inglossy ibiswasnotably low.Twentypercent ofthe gad- wallindividualsanalysed ŽTable3.presentedval- ues even higher than those established for birds

only those significant at the 5% level were in-

in contaminatedareas Ž7.5 mgkg—1

wet weight

cluded in the model. Recent papers have criti- cised automaticstepwise proceduresasthey are not necessarily abletoselectthe mostinfluential

Žww., Falandyszetal.,1988.,thisbeingtheonly speciesinwhichanindividualexceeded therefer- encevalues.

variable from a subset

ŽJames and McCulloch,

1990..Themodification ofthestepwisemodelling procedureinvolvedtesting thealternative models that wereobtainedwhenthe second orthe third most significant variable wasincluded Žprovided that itwassignificantatthe5%level.,instead of the most significant one at each step. This For- ward Stepwise Branching Modelling Procedure

3.2.Lead

The levels of Pb ranged between 0.002 and

0.454 mg l—1 ŽTable 2.. The species with the highest mean levels of lead in blood was the mallard, followedbythegadwall.Someindividual specimens ofmallard had levelsclose to 0.5mg

ŽDon´azar et al., 1993.

eventually gave a set of

kg—1,avalueindicativeofleadpoisoninginswans

Table 2

Metal andarsenic concentrationsinbloodofwildbirdsfeedinginthearea around Do˜nanaNational Park a

SpeciesNo.TotalZnTotalPbTotalAsTotalCuTotalSbTotalCoTotalTlTotalCd

specimens

Žmg l—1.Žmgl—1.Žmgl—1.Žmgl—1.Žmgl—1.Žmgl—1.Žmgl—1.Žmgl—1.

CiconiaciconiaN=301.9b

0.071b

0.019b

0.586b

0.002b

0.007b

0.002b

0.0015b

Žwhitestork.

0.8—2.8c

0.002—0.320c

0.006—0.121c

0.180—1.530c

0.002c

0.001—0.016c

0.002c

0.0001—0.0090c

PlegadisfalcinellusN=100.9b

0.061b

0.008b

0.133b

0.002b

0.029b

0.002b

0.0110b

Žglossyibis.

0.7—1.3c

0.020—0.233c

0.006—0.017c

0.067—0.241c

0.002c

0.019—0.041c

0.002c

0.0060—0.0150c

MiliusmigransN=253.3b

0.054b

0.008b

0.211b

0.002b

0.004b

0.002b

0.0068b

Žblackkite.

2.3—4.5c

0.002—0.179c

0.006—0.035c

0.120—0.303c

0.002c

0.001—0.013c

0.002c

0.0010—0.0140c

AythyaferinaN=103.7b

0.073b

0.006b

0.203b

0.002b

0.011b

0.002b

0.0009b

Žpochard.

2.5—6.0c

0.025—0.274c

0.006c

0.151—0.396c

0.002c

0.005—0.016c

0.002c

0.0001—0.0030c

AnasplatyrhynchosN=93.3b0.208b0.011b0.258b0.002b0.006b0.002b0.0048b

Žmallard.

1.3—4.0c

0.045—0.454c

0.006—0.042c

0.142—0.361c

0.002c

0.001—0.015c

0.002c

0.0001—0.0190c

ArdeacinereaN=202.2b

0.015b

0.006b

0.352b

0.002b

0.019b

0.002b

0.0002b

Žgreyheron.

1.5—3.3c

0.002—0.089c

0.006c

0.204—0.650c

0.002c

0.008—0.025c

0.002c

0.0001—0.0010c

Phoenicopterusruber N=201.7b

0.076b

0.006b

0.334b

0.002b

0.054b

0.002b

0.0006b

Žgreaterflamingo.

0.3—2.6c

0.035—0.120c

0.006c

0.187—0.531c

0.002c

0.039—0.070c

0.002c

0.0001—0.0010c

AnasstreperaN=55.9b

0.120b

0.017b

0.526b

0.002b

0.027b

0.002b

0.0006b

Žgadwall.

3.5—8.6c

0.069—0.174c

0.006—0.029c

0.346—0.753c

0.002c

0.005—0.047c

0.002c

0.0001—0.0290c

PlatalealeucorodiaN=303.2b

0.008b

0.019b

0.307b

0.002b

0.048b

0.002b

0.0003b

Žspoonbill.

1.4—5.5c

0.002—0.034c

0.006—0.181c

0.190—0.569c

0.002c

0.001—0.110c

0.002c

0.0001—0.0010c

PodicepscristatusN=72.2b0.002b0.006b0.395b0.002b0.001b0.002b0.0001b

Žgreatcrested grebe.

1.3—2.9c

0.002c

0.006c

0.327—0.488c

0.002c

0.001—0.002c

0.002c

0.0001c

LaruscachinnansN=104.4b

0.020b

0.006b

0.429b

0.002b

0.040b

0.002b

0.0002b

Žyellow-leggedgull.

3.1—5.2c

0.009—0.032c

0.006c

0.271—0.535c

0.002c

0.015—0.070c

0.002c

0.0001—0.0005c

aInthosecasesinwhichthevaluewasnotdetectable,thedetection limitwastaken ŽZn0.23mgl—1;Pb0.002mgl—1;As0.006mgl—1;Cu0.013mgl—1;Sb0.002 mgl—1;Tl0.002mgl—1;Co0.001mgl—1;Cd0.0001mgl—1..

bMean ofnvalues.

cRange ofnvalues.

valuesfoundintheliteratureforcontaminatedanduncontaminatedareas

SpeciesNo.ofZnPbAsCuCd individuals

CiconiaciconiaN=300a

Žwhitestork.

PlegadisfalcinellusN=100a

Žglossyibis.

MiliusmigransN=250a

Žblackkite.

AythyaferinaN=100a

Žpochard.

AnasplatyrhynchosN=90a

Žmallard.

ArdeacinereaN=200a

Žgreyheron.

PhoenicopterusruberN=200a

Žgreaterflamingo.

AnasstreperaN=520a

Žgadwall.

PlatalealeucorodiaN=300a

Žspoonbill.

PodicepscristatusN=70a

Žgreatcrested grebe.

LaruscachinnansN=100a

Žyellow-leggedgull.

33a

20a

32a

30a

78a

5a

70a

100a

0a

0a

0a

17a3a

0a0a

8a0a

0a0a

11a0a

0a0a

0a0a

40a0a

20a0a

0a0a

0a0a

33a

100a

92a

20a

78a

0a

0a

0a

0a

0a

0a

Referencevalue

Ž7.5mgkg—1 ph.b

Ž0.062mgl—1.c

Ž0.020mgl—1.d

Ž1.15mgkg—1 ph.e

Ž0.001mgl—1.f

a%Žno.ofspecimens withvaluehigher than referencevaluefoundintheliterature/no.ofspecimens analysed.

bReferencevalueofZnforbirdsincontaminatedareas ŽFalandyszetal.,1988..

cReferencevalueofPbforbirdsinuncontaminatedareas ŽDieteretal.,1976..

dReferencevalueofAsforbirdsinuncontaminatedareas ŽBurgerandGochfeld, 1997..

eReferencevalueofCuforbirdsincontaminatedareas ŽVanEeden andSchoonbee, 1996..

fReferencevalueofCdforbirdsinuncontaminatedareas ŽGarc´ıa-Fern´andezetal.,1995..

ŽBlus etal.,1991..Thevaluesfoundinducksin uncontaminated areas by other authors are around 0.062 mgl—1 ŽDieteretal.,1976..No individualsofspoonbill,yellow-leggedgull orgreat crested grebe exceeded the referencevalue ŽTa- ble3..

3.3.Arsenic

Levels ofAsranged between 0.006and 0.181 mg l—1 ŽTable 2.. The highest mean contents were found in the white stork, spoonbill and gadwall,inallcasestheywerelessthan therefer-

Eeden and Schoonbee, 1996..Only afewexam- ples of white stork had levels above or around thisvalueŽTable3..

3.5.Antimonyandthallium

Noneof thespeciesanalysedpresentedvalues whichexceeded thedetection limitsŽ0.002mgl—1 forboth metals..

3.6.Cobalt

The Corange varied between 0.001and 0.110

ence value for uncontaminatedareas

Ž0.02 mg

mg l—1 ŽTable 2., with particularly high levels

l—1, Burger and Gochfeld, 1997.. Nevertheless,

someindividualsoffive speciesstudied presented levels that exceeded the referencevalue. There was greatvariabilityinarseniclevelsbetween specimens ofthe samespecies.Thehighnumber of species with levels below the detection limit wasalsonoteworthy Žpochard,greyheron, greater flamingo, great crested grebe and yellow-legged gull..

3.4.Copper

found inthe greater flamingo,spoonbill and yel- low-leggedgull.Thespecieswiththelowestmean levelwasthegreat crested grebe.

3.7.Cadmium

Cd concentrations were between 0.0001 and

0.029mgl—1 ŽTable 2..The species that had the highest mean concentrationsweretheglossyibis, blackkiteandmallard,indescendingorder.When theindividualvaluesforeachofthespecieswere comparedwiththe referencevaluesfound inthe

LevelsofCucontent found wasbetween 0.067

literature for uncontaminated areas

Ž0.001 mg

and1.530mgl—1 ŽTable2..Thespecieswiththe highestcopperbloodlevels werethewhitestork, gadwalland yellow-leggedgull.These mean val- ues are lowerthan those found inthe literature

l—1;Garc´ıa-Fern´andez et al.,1995., onlyfiveof theelevenspeciesincluded inthestudyhadindi-

vidualsthatexceeded thereferencevalue.Itmust be emphasised, however, that in three of these

for contaminatedareas Ž1.15 mgkg—1

ww;Van

five species the percentage of individuals with

Table 4

Variables Žfactorsandcontinuous.that are significantat5%intheGeneralisedLinear Models

Element / Model1a / Model2b
Accounted devianceŽ%. / Factors / Continuous variable / Accounted devianceŽ%. / Factors / Continuous variable
Zn / 71.98 / Species / — / 52.77 / Trophic / —
Pb / 57.48 / Species / — / 24.93 / Sex / —
Trophic
Cd / 79.53 / Species / — / 69.19 / Trophic / Days
Weight
Cu / 49.08 / Species / — / 40.98 / Trophic / Weight
Co / 74.93 / Species / — / 50.74 / Trophic / —
As / 15.90 / Species / — / 9.27 / Trophic / Days

aModel 1:allthevariables studied havebeen included Žspecies;trophic level,sex,daysofexposure andweight..

bModel 2:thevariable ‘species’hasbeen omitted inallcases.

Allthevariables studied havebeen included Žspecies,trophic level,sex,daysofexposure andweight.

gadwall

greater flamingo

Plegadisfalcinellus—0.73720.09550.34040.41152.21800.1922—1.47800.15221.66000.24710.01730.3002 glossyibis

Residual deviance / 308.73 / 115.87 / 1418.90 / 317.83 / 126.29 / 151.81
d.f. / 157 / 165 / 158 / 161 / 165 / 165

S.E.:StandardError. d.f.:degrees offreedom

levelsabove the referencevalues wasveryhigh, andinthecaseoftheglossyibisitwas100%.

4.Discussion

Twomodel groups werefittedforAsandeach ofthemetalsexceptSb andTl,whichwerenot- detectedinmostofthebirdsstudied. InModel1 all the variables were included Žspecies, trophic level,weight,timeelapsedsincethespillandsex., whileinModel2thespeciesvariablewasomitted inallcases.Varioussignificantmodelswerefound inbothgroups.Ineachcaseonlythebestmodels wereselected, i.e.thosewiththesmallestresidual deviance ŽTable4..

Whenweconsidered Model1,modelswere obtainedthat explained ahighpercentageofthe original deviance for all the metals except As ŽTable 5..Moreover, for allthe metals the best model included only one variable, species, and noneof theotherfactorsorcontinuousvariables considered was significant at the level chosen Ž5%.. Thevariousmodelspredictadifferent be- haviour for each species according to the metal beingconsidered.Forexample,theglossyibiswas thespeciesleastcontaminatedbyCuorZn;simi- larly, the white stork was the species with the highestconcentrationofCuinblood,whereasZn was theninthintheorderofZnconcentration comingafterthegadwall,yellow-legged gull, pochard,blackkite,mallard,spoonbill,greyheron, andgreat crested grebe.

In the models that did not include species ŽModel 2., the factors and continuous variables that are significant at the 5% level varied from

andtwocontinuousvariables,daysandweight,as significant,withmetalconcentrationincreasing as weightandpossibledays ofexposuretothespill decrease. ForCu,Model2 includesonefactor, trophic position,andonecontinuousvariable, weight;withineachtrophiclevel, theCuconcen- tration inbloodtendstoincrease withbirdweight. ForCo,onlytrophic positionissignificant;Model

2predicts the greatest concentrationin inverte- brate predatorsandthesmallest concentrationin fishpredators. ForAs,Model2includestwo significant variables, trophic position as a factor anddaysasacontinuousvariable,withthemetal concentration increasingasthepossibledays of exposuretothespill decrease.TheGeneralised Linear Models show that when the species to whichanindividualbelongsis consideredsepa- ratelyfromits trophicposition,inall themetals studied species is the variable that most con- tributes toexplainingthevariabilityofmetal con- centration inblood.Thismaybelinkedwiththe physiologicalcharacteristicsof speciesrelated to their ability to absorb and excrete metals. In somespeciesofmammals thelevelofmetal con- tamination hasbeenrelated moretoinabilityto excretemetalsthantotheirtrophic position.Nev- ertheless, wecannot discard the possibility that theimportanceofspeciesislinkedwithecological factors such as longevity, ability to move else- where,differences inmicrohabitat, andfeeding habits, which were not consideredin this study andyetare knowntoaffectthelevelofcontami- nation ofanindividual.

5.Conclusions

one metal to another

ŽTables 4 and 6.. In all

cases the models explained a good part of the deviance, except inthe caseofAs.Nevertheless,

Amongthe variousmetals studied, someŽsuch as Zn and Cu. tended to be present in all the

for all the metals the deviance explained was

individuals, whereas others

Žsuch as Sb and Tl.

alwayslessinModel2than Model1.ForZn,the

were not detectedin any of the specimens ex-

Model2includedonlytrophic position,predicting

amined. In the case of Zn and Cu

Žthe only

the highest values inthe carrion consumers and thelowestvaluesintheinvertebratepredators.In thecaseofPb,Model2included trophic position andsexassignificant;thismodelpredicts alower concentrationofPbinfemales fromeachtrophic level.For Cd,Model 2includes trophic position

metalsforwhichbloodvaluesproceeding from studies of contaminatedareas were found. only two speciesshowedindividualswithhigherlevels than thereferencevalues.Thereferencelimitfor Zn wasexceeded by20% of the gadwall speci- mens,while3%ofthewhitestorkspecimens had