title 'Multi-Population Repeated Measures';

data group;

input a b c Group wt @@;

datalines;

0 0 0 0 2 0 0 0 1 2

0 0 1 0 1 0 0 1 1 1

0 1 0 0 0 0 1 0 1 0

0 1 1 0 1 0 1 1 1 0

1 0 0 0 0 1 0 0 1 2

1 0 1 0 1 1 0 1 1 2

1 1 0 0 1 1 1 0 1 3

1 1 1 0 24 1 1 1 1 20

; proc catmod data=group;

weight wt;

response marginals;

model a*b*c=Group _response_ Group*_response_

/ freq nodesign;

repeated Trial 3;

title2 'Saturated Model';

run;

title 'Growth Curve Analysis'; data growth;

input Diag $ Treat $ week1 $ week2 $ week4 $ count @@;

datalines; mild std n n n 16 severe std n n n 2

mild std n n a 13 severe std n n a 2

mild std n a n 9 severe std n a n 8

mild std n a a 3 severe std n a a 9

mild std a n n 14 severe std a n n 9

mild std a n a 4 severe std a n a 15

mild std a a n 15 severe std a a n 27

mild std a a a 6 severe std a a a 28

mild new n n n 31 severe new n n n 7

mild new n n a 0 severe new n n a 2

mild new n a n 6 severe new n a n 5

mild new n a a 0 severe new n a a 2

mild new a n n 22 severe new a n n 31

mild new a n a 2 severe new a n a 5

mild new a a n 9 severe new a a n 32

mild new a a a 0 severe new a a a 6

;

proc catmod order=data data=growth;

title2 'Reduced Logistic Model';

weight count;

population Diagnosis Treatment;

response logit;

model week1*week2*week4=

(1 1 1 0 0,/* mild, std */

1 1 1 1 1,

1 1 1 2 2,

1 1 -1 0 0,/* mild, new */

1 1 -1 1 -1,

1 1 -1 2 -2,

1 -1 1 0 0,/* severe, std */

1 -1 1 1 1,

1 -1 1 2 2,

1 -1 -1 0 0,/*severe,new */

1 -1 -1 1 -1,

1 -1 -1 2 -2)

(1='Intercept',

2='Diag',

3='Treat',

4='Time effect',

5='Time*Treat effect')

/ freq;

quit;

run;

Multi-Population Repeated Measures

Saturated Model

The CATMOD Procedure

Data Summary

Response a*b*c Response Levels 7

Weight Variable wt Populations 2

Data Set GROUP Total Frequency 60

Frequency Missing 0 Observations 12

Population Profiles

Sample Group Sample Size

1 0 30

2 1 30

Response Profiles

Response a b c

1 0 0 0

2 0 0 1

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7

1 2 1 1 0 1 1 24

2 2 1 0 2 2 3 20

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 16.92 <.0001

Group 1 0.78 0.3781

Trial 2 3.12 0.2099

Group*Trial 2 4.32 0.1152

Residual 0 . .

Multi-Population Repeated Measures

Saturated Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Std Chi-

Effect Param. Est. Err Sq. Pr > ChiSq

Intercept 1 .15 .03 16.92 <.0001 Group 2 -.03 .03 0.78 0.3781

Trial 3 -.03 .02 2.60 0.1067

4 .02 .02 1.22 0.2687

Gr*Trial 5 .05 .02 4.30 0.0381

6 -.01 .02 0.44 0.5069

Growth Curve Analysis

Reduced Logistic Model

The CATMOD Procedure

Data Summary

Resp: week1*week2*week4 Resp Levels 8

Weight Variable: count Populations 4

Data Set: growth Total Freq: 340

Freq Missing 0 Observations 29

Population Profiles

Sample Diag Treat Sample Size

1 mild std 80

2 mild new 70

3 severe std 100

4 severe new 90

Response Profiles

Response week1 week2 week4

1 n n n

2 n n a

3 n a n

4 n a a

5 a n n

6 a n a

7 a a n

8 a a a

Response Frequencies

Response Number

Sample 1 2 3 4 5 6 7 8

1 16 13 9 3 14 4 15 6

2 31 0 6 0 22 2 9 0

3 2 2 8 9 9 15 27 28

4 7 2 5 2 31 5 32 6

Growth Curve Analysis

Reduced Logistic Model

The CATMOD Procedure

Response Functions and Design Matrix

Pop. Function Resp Design Matrix

Number Func 1 2 3 4 5

1 1 .05 1 1 1 0 0

2 .35 1 1 1 1 1

3 .73 1 1 1 2 2

2 1 .11 1 1 -1 0 0

2 1.29 1 1 -1 1 -1

3 3.52 1 1 -1 2 -2

3 1 -1.32 1 -1 1 0 0

2 -.94 1 -1 1 1 1

3 -.16 1 -1 1 2 2

4 1 -1.53 1 -1 -1 0 0

2 .00 1 -1 -1 1 -1

3 1.60 1 -1 -1 2 -2

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 39.31 <.0001

Diag 1 77.07 <.0001

Treat 1 0.05 0.8192

Time effect 1 102.67 <.0001

Time*Treat effect 1 26.93 <.0001

Residual 7 4.15 0.7627

Analysis of Weighted Least Squares Estimates

Std. Chi-

Effect Param. Est. Err. Sq. Pr > ChiSq

Model 1 -0.71 0.11 39.31 <.0001

2 0.64 0.07 77.07 <.0001

3 0.02 0.11 0.05 0.8192

4 0.97 0.09 102.67 <.0001

5 -0.49 0.09 26.93 <.0001