Electronic SupplementaryMaterials (ESM)
Thermal behaviour of low rank Indian coal fines agglomerated with an organic binder
Tonkeswar Das, Bimala P Baruah, Binoy K Saikia*
Polymer Petroleum and Coal Chemistry Group, Materials Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
Fig.S1 Dehydration and primary devolatilization of carbonized ACFs
Fig.S2 Secondary devolatilization and combustion of char particles of carbonized ACFs
Fig.S3 Combustion of char particles and the opening pores of carbonized ACFs
Table S1 Variation of activation energy with fraction of mass loss for sample CN-1
Fraction of Mass loss / Freidman Method / Ozawa-Flynn-Wall MethodActivation Energy (kJ mol-1) / log A1/s^-1 / Activation Energy (kJ mol-1) / log A1/s^-1
0.020 / 265.07 ± 294.78 / 36.80 / 272.20 ± 615.15 / 39.03
0.050 / 5.13 ± 1.50 / -3.51 / -5.29 ± 4.03 / -3.78
0.100 / 47.94 ± 13.41 / 0.36 / -3.72 ± 15.33 / -3.94
0.200 / 137.13 ± 73.33 / 7.37 / 83.61 ± 165.52 / 3.33
0.300 / 158.34 ± 23.75 / 8.80 / 204.46 ± 98.80 / 12.62
0.400 / 142.47 ± 2.00 / 7.49 / 202.88 ± 39.04 / 12.29
0.500 / 130.70 ± 12.05 / 6.54 / 186.83 ± 13.07 / 10.93
0.600 / 124.60 ± 19.26 / 6.01 / 171.44 ± 1.14 / 9.67
0.700 / 121.90 ± 29.58 / 5.71 / 156.40 ± 12.71 / 8.44
0.800 / 117.06 ± 51.15 / 5.20 / 137 ± 26.23 / 6.96
0.900 / 68.39 ± 101.96 / 1.71 / 96.64 ± 45.25 / 3.90
0.950 / -0.51 ± 72.96 / -2.80 / 43.02 ± 39.46 / 0.11
0.980 / 14.07 ± 58.81 / -2.14 / 37.23 ± 29.18 / -0.53
Mean / 102.48 ± 58.04 / 5.96 / 121.74 ± 84.99 / 7.61
Table S2Variation of activation energy with fraction of mass loss for sample CN-2
Fraction of Mass loss / Freidman Method / Ozawa-Flynn-Wall MethodActivation Energy (kJ mol-1) / log A1/s^-1 / Activation Energy (kJ mol-1) / log A1/s^-1
0.020 / -70.56 ± 31.35 / -14.83 / -49.18 ±16.78 / 3.59
0.050 / -0.93 ± 7.73 / -4.16 / -8.21 ±1.06 / -3.36
0.100 / 17.24 ± 2.79 / -2.22 / -20.75 ±14.47 / -2.02
0.200 / 11.96 ± 128.8 / -2.27 / -109.92 ±245.19 / 5.63
0.300 / 181.52 ± 26.66 / 10.63 / 293.88 ±121.89 / 19.68
0.400 / 128.47 ± 15.22 / 6.52 / 210.49 ±20.99 / 12.99
0.500 / 107.20 ± 24.4 / 4.89 / 172.61 ±0.52 / 9.97
0.600 / 95.07 ± 31.73 / 3.96 / 148.08 ±12.17 / 8.03
0.700 / 83.15 ± 41.04 / 3.06 / 125.15 ±21.4 / 6.25
0.800 / 58.92 ± 52.7 / 1.32 / 96.02 ±28.49 / 4.05
0.900 / -12.31 ± 54.93 / -3.41 / 47.52 ±24.95 / 0.52
0.950 / -18.71 ± 35.97 / -3.84 / 21.57 ±14.92 / -1.4
0.980 / -2.61 ± 35.99 / -2.85 / 14.18 ±17.49 / -1.97
Mean / 44.49 ± 31.35 / -0.26 / 72.41 ± 41.56 / 4.76
Table S3 Variation of activation energy with fraction of mass loss for sample CN-3
Fraction of Mass loss / Freidman Method / Ozawa-Flynn-Wall MethodActivation Energy (kJ mol-1) / log A1/s^-1 / Activation Energy (kJ mol-1) / log A1/s^-1
0.020 / -3.13 ±22.39 / -4.71 / 14.14 ±8.52 / -1.91
0.050 / -1.39 ±4.21 / -4.09 / 2.45 ±3.4 / -4.12
0.100 / 37.14 ±12.06 / -0.4 / -34.92 ±10.43 / -0.8
0.200 / -144.77 ±14.81 / -14.28 / -646.83 ±82.66 / 48.02
0.300 / 161.61 ±95.92 / 9.33 / 447.39 ±215.93 / 31.6
0.400 / 107.08 ±40.99 / 5.14 / 251.84 ±76.97 / 16.32
0.500 / 87.57 ±26.88 / 3.67 / 190.3 ±46.08 / 11.51
0.600 / 75.9 ±18.95 / 2.8 / 156.09 ±31.04 / 8.84
0.700 / 65.52 ±12.7 / 2.05 / 130.02 ±21.23 / 6.83
0.800 / 49.38 ±7.33 / 0.91 / 102.95 ±14.13 / 4.77
0.900 / -2.46 ±6.57 / -2.61 / 62.27 ±9.82 / 1.74
0.950 / -35.1 ±4.19 / -4.76 / 29.02 ±6.4 / -0.72
0.980 / -29.35 ±24.14 / -4.22 / 17.85 ±4.55 / -1.59
Mean / 28.30 ± 22.39 / -0.85 / 55.58 ±40.85 / 9.26
Table S4 Algebraic expression of most common reactions and their mechanisms
No / Symbol / Reaction Model / /F1 / First order reaction(Mampel) / /
F2 / Second order reaction / /
F3 / third order reaction / /
Fn / n-th order reaction(Present Study) / /
P1 / Power law / /
P2 / Power law / /
P3 / Power law / /
P4 / Power law / /
R2 / Phase boundary controlled reaction (contracting volume, i.e., bidimensional shape) / /
R3 / Phase boundary controlled reaction (contracting volume, i.e., tridimensional shape) / /
A2 / Two-dimensional nucleation, Avrami-Erofeev / /
A3 / Three-dimensional nucleation, Avrami-Erofeev / /
A4 / Four-dimensional nucleation, Avrami-Erofeev / /
An / n-dimensional nucleation, Avrami-Erofeev(Present Study) / /
D1 / One-dimensional diffusion / /
D2 / two-dimensional diffusion (bidimensional particle shape), valensi equation / /
D3 / three-dimensional diffusion (tridimensional particle shape), Jander equation / /
D4 / three-dimensional diffusion (tridimensional particle shape), Ginstling-Brounshtein equation / /
Table S5 Activation energies of different fuels
Samples / Atmosphere / E (kJ mol-1) / Sourcescoal / Air / 101.46-122.94 / Zhang et al. [20]
O2/CO2 / 81.44-91.87
Indonesian Coal / Air / 151.7 / Muthuraman et al. [19]
Indian Coal / Air / 119.3
Low rank Indonesian / O2 / 82.46 / Li et al. [18]
Low rank Indonesian / Air / 74.66
Brazilian Bituminous coal / Air / 104.2 / Filho and Milioli[17]
Nuclear Graphite / Dry Air / 158.5 / Xiaowei et al. [16]
Graphite / Oxygen / 237.6 / Zhang et al. [15]
High ash Indian coal / Air / 108.72 / Sahu et al. [44]
Rice and straw / 132-139 / Xie and Ma[14]
Hard coal / O2 / 115.4 / Kastanaki and Vamvuka[13]
Forest residue / 130.0
Cotton residue / 149.9
Wood / 145.3
Lignite / 132.4 -165.1
Olive kernel / 151.2 -226.5
Coals / N2 / 165-183 / Yadav et al. [12]
O2 / 65-75
coal / N2 / 135-158 / Khare et al. [11]
Coal/pine dust blends / O2 / 195-229 / Gil et al. [4]
Coal/wood / O2 / 80-169 / SinemandYuda[10]
Biomass fiber / N2 / 75-200 / Alwani et al. [9]
Biomass / N2 / 118.35–268.0 / Wu et al. [8]
Coal and coal fire wood blends / O2 / 80.6-169.3 / Tasand Yurum[7]
Carbonized coal Nodules (CN-1) / O2 / 191.57 / Present study
Carbonized coal Nodules (CN-2) / O2 / 162.30 / Present study
Carbonized coal Nodules (CN-3) / O2 / 132.75 / Present study