06.03 Calorimetry: Lab Report

Before You Begin: You may either copy and paste this document into a word processing program of your choice or print this page.

Part I

The Dissolving of Solid Sodium Hydroxide in Water

Procedure:

  1. Measure out approximately 200 mL of distilled water and pour it into the calorimeter. Stir carefully with a thermometer until a constant temperature is reached. Record the volume of water and the constant initial temperature of the water on your data table.
  2. Place a plastic measuring trough on top of the digital balance, and then zero the balance (press the tare button) so that the mass of the trough will be "ignored" and will not be added to the total mass measured by the balance.
  3. Measure out approximately three to five scoops of solid sodium hydroxide and record the mass to your data table.
  4. Place the solid sodium hydroxide into the water in the calorimeter and replace the lid immediately. Stir gently until the solid is completely dissolved and record the highest temperature reached.

Data and Observations:

  1. Insert a complete data table, including appropriate significant figures and units, in the space below. Also include any observations that you made over the course of Part I.

Volume of H2O / 200.0 mL H2O
Mass of NaOH / 2.535 g NaOH
Initial temperature in calorimeter / 24.2 °C
Final temperature in calorimeter / 27.8 °C

Calculations:

Show your work and write a short explanation with each calculation.

  1. Write out a balanced "equation" for the process you investigated in Part I, including phase symbols.
  2. Calculate the number of moles of sodium hydroxide dissolved. Show your work.
  3. Calculate the amount of energy involved in this dissolving process. Show your work.
  4. Determine the enthalpy change, per mole of sodium hydroxide dissolved. Show your work.
  5. The value determined in question 4 is the enthalpy change value you will need for Conclusion question 1 below.

Part II

The Reaction of Sodium Hydroxide Solution with Hydrochloric Acid

Procedure:

  1. Measure out approximately 100 mL of 0.50 M hydrochloric acid solution and 100 mL of 0.50 M sodium hydroxide solution. Record both volumes on your data table.
  2. Pour the hydrochloric acid solution into the calorimeter. Measure and record the initial temperature of each solution and record on your data table.
  3. Add the sodium hydroxide solution to the acid solution in the calorimeter and immediately replace the lid of the calorimeter. Stir the mixture and record the highest temperature reached.

Data and Observations:

  1. Insert a complete data table, including appropriate significant figures and units, in the space below. Also include any observations that you made over the course of Part II.

Volume of HCl solution / 100.5 mL HCl
Volume of NaOH solution / 100.0 mL NaOH
Initial temperature in calorimeter / 25.2 °C
Final temperature in calorimeter / 28.2 °C

Calculations:

  1. Write out a balanced equation for the reaction you investigated in Part II, including phase symbols.
  2. Determine the enthalpy change of this reaction. The mass of the sodium hydroxide and the mass of the hydrochloric acid should be added together.
  3. Determine the number of moles of NaOH.
  4. Determine enthalpy per mole of NaOH. Show all of your work.
  5. The value determined in question 4 is the enthalpy change value you will need for Conclusion question 1 below.

Conclusion:

  1. Determine the enthalpy change for NaOH (s) + HCl (aq) → NaCl (aq) + H2O (l) using Hess's Law
    a. Write the balanced chemical reaction and enthalpy change for Part I (1pt)
    b. Write the balanced chemical reaction and enthalpy change for Part II (1pt)
    c. Calculate the enthalpy change using Hess's Law. Refer to the lesson for an example of Hess's Law. (2pt)
  2. If the accepted enthalpy change value for the dissolving of sodium hydroxide in water is −44.2 kilojoules per mole, determine the percent error of the experimental value that you calculated in Part I. Show your work.

(experimental - actual value) / actual value × 100 %

  1. If the accepted heat of reaction for the neutralization of hydrochloric acid with sodium hydroxide is −56.0 kilojoules per mole, determine the percent error of the experimental value that you calculated in Part II. Show your work.

(experimental - actual value) / actual value × 100 %

  1. Using the accepted values of the processes you've examined, would your estimation of the enthalpy change for the reaction of solid sodium hydroxide in aqueous hydrochloric acid change from the prediction you made in question one? Explain your answer in complete sentences.
  2. Give a detailed explanation, using what you know about bonds and forces of attraction, for the enthalpy changes you observed in parts I and II of this lab. Explain your answer in complete sentences.
  3. If the hole for the thermometer in a calorimeter is wider than the diameter of the thermometer, leaving a gap between the lid and the thermometer itself, how do you think this would this affect the temperature change observed in the experiment? How would this affect the calculated enthalpy change? Explain your answers in detail.

[ Close this window ]