Design Studies for an 18 MW Beam Dump
at the future Electron Positron Linear Collider TESLA
A. Leuschner, M. Schmitz, A.S. Schwarz, N. Tesch
Deutsches Elektronen-Synchrotron, DESY
Notkestrasse 85, D – 22607 Hamburg, Germany
Corresponding author: Norbert Tesch, e-mail:
Abstract
The conceptual design of a water based beam dump for the future electron positron linear collider TESLA will be presented. Based on a study done by DESY and industrial design approaches, the problems and difficulties in terms of radiation protection and safety for an 18 MW beam dump system will be shown.
The whole list of advantages and disadvantages of such a water based beam dump system has been worked out such as thermo-hydraulic calculations to estimate the heat removal in the complex water system and to validate the principle feasibility of such a system, formation of radiolysis gases like H2, pressure waves, activation of the dump medium water mainly in form of 3H and feasibility of the dump windows (to separate the beam pipe vacuum from the beam dump water system), radiation protection issues like shielding calculations, air activation, material activation (mainly primary water system), maintenance procedures and waste disposal.
To overcome the major disadvantages of a fluid based (H2O) beam dump design a proposal for a gas based (argon) beam dump of considerablelength as an alternative has been evaluated. The gas beam dump will be of cylindrical shape and consists of an argon filled beam pipe and an iron shielding covered by a water cooling system.
Introduction
The TESLA (TeV-Energy Superconducting Linear Accelerator) project(1)is an electron positron linear collider with a beam energy of 250 GeV in the first step and 400 GeV in the second step. It has a total length of 33 km, with 2 accelerator sections of 15 km each. The inner tunnel diameter is 5 m and it will be located 10 –30m under the earth surface. In the first stage it has one collision zone, in the second stage two collision zones for high energy physics experiments with luminosity up to 5.81034 cm-2s-1. The 400 GeV electron beam has the following characteristics: 6.81013 electrons per bunch train of length 860 s with a repetition rate of 4 Hz, resulting in an energy of 4.4 MJ per bunch train and a total average power of one electron beam of 18 MW.
At the end of each TESLA linac there will be a beam dump system(2) (Figure 1),which on the one hand has to absorb the full beam power of 18 MW during the normal luminosity operation (spent beam) and on the other hand it has to absorb the same amount of beam power from the other side during machine commissioning. In the beginning the choice of technology for such a beam dump was the solid (C-Cu) option. Because the heat extraction from a solid beam dump system seems to be not practicable for the given beam power, the base line design changed to the fluid (H2O) option. The TESLA water beam dump system consists of a cylindrical H2O volume, with a length of 10 m, a diameter of 1.5 m and a static pressure of 10 bar. In a first approach the connection between the vacuum of the beam line and the water of the dump was done by a system of titanium-graphite sandwich windows(3), but a final solution has not yet been found. To distribute the beam energy spatially (RMS beam size at the dump is only 0.4 mm2) on the windows and in the water a fast (within bunch train) circular sweeping system is planned with a sweeping radius of 8 cm(4). After detailed studies of such a system, which are described in the next three chapters, it was clear that it might be worthwhile to consider a gas (for example: argon) beam dump to overcome most of the below described problems of the water beam dump system.
Thermal Aspects: Heat Removal
The internal water system (heat removal inside the dump system) and the external water system (heat removal from the dump to the general cooling water system) were investigated. The external water system (Figure 2) is a more or less conventional system, with a primary and secondary cooling system. The major part of the work was the simulation and development of the internal water system. The requirements for such a system were: safe removal of the complete dumped energy under consideration of the given energy density (Figure 10), usability of the beam dump system from both sides (luminosity operation and machine commissioning), feasible maintenance and repair procedures and solution of problems due to radiolysis and pressure waves (next chapter).
Different schemes for the internal water flow have been investigated: vortex flow(5)and longitudinal/radial flow(6) (Figure 3). For the vortex flow design a bypass system was developed to increase the internal flow rate from 140 kg/s to 260 kg/s (Figure 4). To study the water flow inside the dump vessel under the given constraints simulations were done using the CFD program ACE (CFD-ACE 6.6, CFD Research Corporation) for the vortex flow option and the PHOENICS program (Version 3.4, 2002, CHAM, Wimbledon) for the longitudinal/radial option. The main goal of the simulations was to show that it is possible to construct a beam dump system, in which local boiling (temperature above 180C at 10 bar) can be avoided at any position inside the dump.
The following items have been optimized: characteristics of the incoming water (velocity, mass flow and distribution), different internal water guide designs as well as inlet and outlet positions. It was found that both designs fulfill the requirements. The 2d stationary simulation of the vortex flow design results in a very high water velocity at the inlet of 30 m/s with 130 kW pump power. Including the instantaneous temperature rise by the energy deposition of the next bunch train the maximum temperature of this design will be 125C and therefore well below 180C (Figure 5 and Figure 6). For the longitudinal/radial flow design the 3d simulation with an internal and external flow of 140 kg/s results in a maximum temperature of 108C and seems to be the better solution at the cost of more complex water guide installations inside the dump vessel. Therefore in both studies it could be shown that a water based beam dump system seems to be feasible in terms of heat removal with the option of further improvements.
Radiolysis and Pressure Waves
Due to the shower of high energy primary electrons in the water dump, the net rate of cracking H2Omolecules by radiolysis is 0.27 g/MJ, which gives 30 ml/MJ H2 and 15 ml/MJ O2at 20°C and 10 bar. The solubility in water at a temperature of 60°C is 16ml/l for H2 and 19.4 ml/l for O2. To exceed the solubility at 10 bar a local energy deposition of 530 J/cm3 for H2is necessary respectively 1300 J/cm3 for O2. The given beam parameters lead to a maximum value of 160 J/cm3 by one bunch train (see Figure 10) and thus a safety factor of more than 3 is achieved. But a local pressure drop or a higher local energy density will easily reduce this margin (see next section). Overall we expect for a 18 MW electron beam 4.8 g/sH2O to be cracked, which corresponds to 0.54 l/s H2 and 0.27 l/s O2 at 20°C and 10 bar. Without a recombination system the whole primary water (30 m3) would be radiolysed in about 72days. Although modern catalytic recombiners can handle this amount of gas, not all H2 will be recombined because of imperfect water flow (local pockets). Furthermore, there is a certain amount of dissolved gas, which can outgas and accumulate at special locations where the temperature is high and the pressure low. Therefore an efficient recombination should treat 100% of the water flow by a decompress-compress stage in order to extract and recombine all dissolved gases and additionally by catalytic recombiners being directly put into the return pipe of the dump vessel.
Pressure wave calculations(7)were done using the CFD program Fluent (Version 6.0, Fluent Inc.) considering as input one bunch train of length 860s as direct current. Phase transitions are not simulated. The pressure rise and drop as a function of radius at the z-position of the maximum energy density (z=2.5m)can be seen in Figure 7 and Figure 8. The maximum pressure rise for r=0 at 100s is 3.7bar, whereas the minimum pressure drop for r=0 at 950 s is -1.6 bar. The latter effect results in a reduction of the local boiling point and the solubility of the gas, which can transform into a critical formation of vapour and gas bubbles, especially at higher energy densities due to beam sizes less than assumed here. The maximum pressure rise at the vessel wall at 650 s will be 1.8 bar and at the front and rear windows below 0.5 bar, both are uncritical in terms of a technical solution. The pressure waves decay after 3 ms completely, which is well before the next bunch train arrives after 250 ms.
Shielding and Activation
Extensive shielding calculations and activation calculation were done for the TESLA beam dump(8,9,10,11)mainly with the program FLUKA(12,13). The shielding against direct radiation was studied as well as the activation of soil, groundwater and air to protect the public and the workers against radiation. Furthermore, the activation of the primary water system, the dump vessel and the corresponding shielding was investigated keeping in mind the maintenance procedures, repair scenarios and the final dismantling of the whole beam dump complex.
To reach the planning goal for the public of 100 Sv/year for the dose due to direct radiation (factor 10 below German legal limit) a radial shielding of 3 m of normal concrete and 7 m of soil between the dump vessel and a person of the general public will be sufficient. To reach 30 Sv/year for the dose due to incorporation of radioactive water and air (factor 10 below German legal limit) a radial shielding of 3 m of normal concrete between the dump vessel and the surrounding soil and groundwater will be adequate.
A critical item is the activation of the 30 m3 water of the primary circuit. Here mostly 3H and 7Be are the relevant isotopes, the saturation activities for 3H will be 250 TBq and for 7Be 108 TBq, after one year of operation the amount of 3H will be 8 TBq whereas for 7Be it will be 102 TBq. The tritium does not contribute to the dose rate due to direct radiation, but represents a incorporation risk in case of any release due to accidents, maintenance or repairs. Beryllium is the main contributor to the dose rate due to direct radiationin case of access for maintenance or repair. It will be more or less equally distributed inside the water, resulting in dose rates up to 300 mSv/h close to the surfaceand 50 mSv/h at 1 m distance. Special resin filter systems will accumulate most of the Beryllium, but accumulation will also happen at other locations such as heat exchangers. All these locations need extra local shielding to guarantee access. The main steel vessel will have a dose rate of 400 mSv/h on its axis after one year of operation. This excludes regular inspections for pressure vessels, which are usually required.
During operation of the dump,the air of the containment, which has to be closed at under-pressure, will be activated. It was shown that the best procedure for the 3000 m3 air inside the containment will be a replacement with an exchange rate of one hour with a buffering time of one hour (to allow for the decay of short lived isotopes) before the air can be deflated through an exhaust.
The standard maintenance procedure to work at the primary circuit system (30 m3 water with about 100 TBq 3H after 10 years), will be flushing the whole water from the primary circuit into special storage tanks, with about 100 l remaining on the surface (0.1 mm on 1000 m2) inside the vessel. This amount has to be removed with a special venting system with dry gas, resulting in a release of about 10 GBq of tritium through a 20 m chimney assuming a 95% efficient condenser. The whole procedure will take about 42 days.
For the final shutdown of the whole dump system it was assumed that after an average operation period of 20 years 200 TBq 3H are accumulated, which have to be disposed. A possible scenario was found by binding the primary water in form of concrete and putting it into 5000 barrels with 200 l and 40 GBq each. The dismantled steel components were estimated at 150 tons with specific activities of 103 – 106Bq/g and 1500 tons of concrete with specific activities of 10 – 200 Bq/g. All components (water, steel and concrete) can be disposed without problems, but the costs are not negligible and should be taken into account already at the design stage.
A New Idea: The Gas Dump
To overcome most of the above described problems of the water beam dump a gas beam dump was considered, which is composed of a material with atomic number greater than 20 to reduce the tritium production and a one-atomic gas to avoid radiolysis. The first attempt was a cylindrical geometry with an inner tube of radius 4 cm filled with argon at 1 bar, which acts as scattering target(energy deposition of 0.5%) and distributes the beam energy longitudinally (no sweeping needed) over a length of 1000 m leading to low power densities in the gas. The energy density calculated with the FLUKA program can be seen in Figure 9. The main part of the energy is dumped in the iron shell of radius 52 cm, surrounded by a 4 cm thick water cooling system. The gas beam dump system with a diameter of 1.20 m and a length of 1000 m might be positioned inside the collider tunnel. This construction could also be used as a beam dump for a - collider, where two high energetic photons (instead of electrons and positrons) are colliding.
In comparison to the water dump design (numbers given in brackets) the gas dump design has the following advantages: The saturation activity for tritium is about 30 TBq, with 0.7 TBq in gas, 29.3 TBq in ironand 0.02 TBq in water(water dump: 300 TBq in water). The window has to withstand a static pressure of 1 bar and a dynamic pressure of 0.01 bar with a diameter of 8 cm, these type of windows are already available (water dump: 10 bar static and 0.5 bar dynamic with a diameter of 20 cm with a huge R&D effort). In case of maintenance or repair the activated gas can be rinsed out and pressed to a vessel with 5000 liter at 1 bar. A leakage of 0.1% leads to a 0.03 GBq tritium release (water dump: primary water has to be deflated and components have to be dried; 5% inefficiency for dryer and 20 m chimney result in 10 GBq tritium release). The radiation risk due to:leakage in the primary cooling system will be very low (water dump: high), broken beam window will be low (water dump: medium), failure of the main water pump will be very low (water dump: low). Further advantages are the absence of H2gas production because the cooling water is heated by heat conduction (water dump: by ionization).
It will be a challenge to design the dump with nearly equally distributed power density over the whole length. In that case an average power of 18 kW/m has to be conducted from the inner iron surface to the water system (temperature difference of 150 K). A disadvantage of course is the activation of 1000 m tunnel with dose rates in the order of a few mSv/h, hence additional shielding is needed and maybe because of space problems an adopted tunnel design. But nevertheless the idea of a gas based beam dump for the next linear collider and even for the - collider seems to be very attractive and will have to be considered in the early design phase.
Conclusion
It was shown that for the electron positron collider TESLA a water based beam dump can be built in principle but with certain disadvantages such as risk due to H2gas production, high tritium concentration in the coolant,which requires a huge effort in terms of radiation protection and the complexity of the beam dump window design. Therefore a gas based beam dump with a length of 1000 m was proposed and investigated with the result that most of the above mentioned problems can be solved within such a design.
References
- R. Brinkmann, K. Flöttmann, J. Rossbach, P. Schmüser, N. Walker, H. Weise (editors); TESLA Technical Design Report, Part II, The Accelerator; DESY 2001-011 (2001).
- M. Maslov et al.; Concept of the High Power e+e- Beam Dumps for TESLA; DESY TESLA Report 2001-04.
- M. Maslov et al.; Concept of Beam Entrance and Exit Windows for the TESLA Water based Beam Dumps and its related Beam Lines; DESY TESLA Report 2001-07.
- V. Sytchev et al.; Concept of the Fast Beam Sweeping System for the e+e- Beam Dumps of TESLA; DESY TESLA Report 2001-05.
- Fichtner GmbH & Co. KG; Projekt TESLA Strahlabsorber - Erstellung des Basiskonzeptes; Stuttgart, Germany, April 2003.
- Framatome ANP GmbH;Projekt 18 MW Beam Dump für TESLA – Dokumentation; Erlangen, Germany, March 2003.
- TÜV Nord Gruppe; DESY Beam Dump – Berechnung des Druckaufbaus; Hamburg, Germany, July 2002.
- B. Racky, H. Dinter, A. Leuschner, K. Tesch; Radiation Environment of the Linear Collider TESLA; DESY Laboratory Report D3-98 (1998).
- K. Tesch; Shielding against high energy neutrons from electron accelerators – A review; Radiation Protection Dosimetry 22 (1988) 27.
- K. Tesch; Production of radioactive nuclides in soil and groundwater near the beam dump of a linear collider; DESY Internal Report D3-86 (1997).
- N. Tesch; Soil, groundwater and cooling water activation at the TESLA beam dump; DESY Laboratory Report D3-114 (2001).
- A. Fasso, A. Ferrari, P.R. Sala; Electron-Photon Transport in FLUKA: Status; Proceedings of the Monte Carlo 2000 Conference, Lisbon, October 23-26 2000, Springer-Verlag Berlin (2001) 159-164.
- A. Fasso, A. Ferrari, J. Ranft, P.R. Sala; FLUKA: Status and Prospective for Hadronic Applications; Proceedings of the Monte Carlo 2000 Conference, Lisbon, October 23-26 2000, Springer-Verlag Berlin (2001) 955-960.
Figures