TableS3. Symbiosis and non-symbiosis genes used in this study.
Symbiosis genes.
Symbiotic genes from NodMutDB [1]acdS / acpXL / actP / actR / actS / aniA / asnO / aspA / bacA / basR
bcpB / bioS / bluB / bsl1845 / catC(katC) / cbrA / ccmC / chvA / chvG(exoS) / chvI
clpX / cpdR1 / cpdR2 / cycH / cycJ / cycK / cycK / cycL / cycL / cysG
dctA / dctB / dctD / dctM / dctP / dctQ / ddhB / degP1 / dme / ecfG
emmA / emmB / emmC / exoA / exoB / exoB / exoD / exoF1 / exoF2 / exoF3
exoH / exoI / exoI2 / exoK / exoL / exoM / exoM / exoN / exoN / exoN2
Exo / exoP / exoP / exoP2 / exoQ / exoR / exoT / exoT / exoU / exoU
exoV / exoW / exoX / exoY / exoZ / exoZ / expA1(wgaA) / expA10(wgaJ) / expA23(wgaB) / expA4(wgaD)
expA5(wgaE) / expA6(wgaF) / expA7(wgaG) / expA8(wgaH) / expA9(wgaI) / expC(wgcC) / expD1(wgdA) / expD2(wgdB) / expE1(wgeA) / expE2(wgeB)
expE3(wgeC) / expE4(wgeD) / expE5(wgeE) / expE6(wgeF) / expE7(wgeG) / expE8(wgeH) / expG(mucS, wggR) / expR / fabG / fabI1
fabI2 / fadD / fdxN / feuP / feuQ / fixA / fixA / fixB / fixB / fixC
fixG / fixH / fixI1 / fixI2 / fixJ / fixJ / fixK / fixK1 / fixK2 / fixK2
fixL / fixL / fixN1 / fixN2 / fixN3 / fixO / fixO1 / fixO2 / fixO3 / fixP1
fixP2 / fixP3 / fixQ1 / fixQ2 / fixQ3 / fixR / fixS1 / fixS2 / fixT1 / fixT2
fixT3 / fixU / fixX / flgH / fliP / frxA / fur / glgA1 / glgA2 / glnB
glnD / gltA / glyA / greA / groEL1 / groEL2 / groEL3 / groEL3 / groEL4 / groES1
groES2 / groES3 / gtrA / gtrB / hemA / hemB / hemH / hemN(hemN2) / hmrR / hprK
hsfA / idhA / ilvC / ilvD2 / ilvI / katA / katB / leuA1 / leuB / leuC
leuD / lon / lpsB / lpsC / lpsD / lpsE / lpsL / lpsS / lpxXL / lrp
lsrA / lsrB / mdh / metA / minC / minD / minE / modA / modB / msbA2
mucR / ndvA / ndvB / ndvB / ndvC / ndvD / nesR / nex18 / nfeC / nfeD
nifA / nifA / nifB / nifD / nifE / nifH / nifK / nifN / nifS / nifS
nifX / nifX / nirK / nodA / nodA / nodB / nodB / nodC / nodD1 / nodD1
nodD2 / nodD2 / nodD3 / nodE / nodF / nodG / nodH / nodI / nodI / nodJ
nodL / nodM / nodM / nodN / nodN / nodN / nodN2 / nodP1 / nodP2 / nodQ
nodQ1 / nodQ2 / nodS / nodU / nodV / nodW / nodZ / noeA / noeB / nolA
nolB / nolF / nolG / nolK / nolN / nolO / nolR / nolU / nolV / nosR
nosZ / ntrB / ntrC / ntrP / ntrR1 / ntrX / ntrY / nwsA / nwsB / olsA
olsB / ORF126 / orf74 / pckA / pcm / pdh / pdhAa / pdhAb / pdhB / pgm
phaA1 / phaA2 / phaB2 / phaC1 / phaC2 / phaD1 / phaD2 / phaE1 / phaE2 / phaF1
phaF2 / phaG1 / phaG2 / phbA / phbB / phbC / phoB / phoC / phoD / phoE
phoR / phoT / phoU / phyR / pit / pmtA / ppiB / proC / psd / pstC
Pth / purL / putA / pyc / pyrE / queA / regR / regS / relA / rhcC1
rhcC2 / rhcJ / rhcN / rhcQ / rhcR / rhcV / rkpA / rkpG / rkpH / rkpI
rkpJ / rkpK / rkpU / rkpZ1 / rkpZ2 / ropB1 / rpoB / rpoC / rpoH1 / rpoH2
rpoN(ntrA) / rpoN1 / rpoN2 / sinI / sipF / sipS / sitA(mntA) / sitB(mntB) / sitC(mntC) / sitD(mntD)
SMa0719 / SMb20073 / SMb20076 / SMb20210 / SMb20214 / SMb20492 / SMb20493 / SMb21188 / SMb21189 / SMb21190
SMc00717 / SMc01113 / SMc02486 / SMc02909 / sodB / sodC / stcD2 / surE / syrB / syrB2
syrM / thiC / thiD / thiO / thuA / thuB / tig / tkt2 / tlpA / tme
tolC / tpiA(tpiA1) / tpiB(tpiA2) / trpC / trpD / trpD / trpE / typA / y4xK / y4yJ
y4yQ
Symbiotic genes from reference
acpP[2] / amtB[3] / aoaA[4] / arcA[5] / arcB[5] / arcC[5] / atvA[6] / bacS[7] / bioM[8] / celB[9]
cobO[10] / cycL[11] / cycY[12] / cysN[13] / dnaJ[14] / fegA[15] / fixKf[16] / fixNd[17] / fnrN[18] / fnrN[19]
fnrNd[16] / gabD(gabD2)[20] / gabT(goaG)[21] / gcd[22] / gcvP[23] / gcvT[23] / glnK[24] / gmsA[25] / gshB[26] / gstI[27]
guaB[28] / hesB[29] / hfq[30] / hupE[31] / hupG[32] / hupH[32] / hupI[33] / hupJ[32] / hupL[32] / hupT[32]
hurL(px)[34] / hypA[32] / hypB[32] / hypD[32] / hypE[32] / hypF[32] / iolA[35] / iolC[35] / iolD[36] / iolE[36]
iscN[37] / katE[38] / kdsB2[39] / kpsF3[40] / kpsS[41] / kup1[42] / lpiA[43] / lrpL[44] / lspL[45] / matA[46]
matB[46] / matC[46] / matP[47] / matQ[47] / mcpB[48] / mcpC[48] / mcpD[48] / metH[49] / metZ[50] / mrlI1[51]
mrlI2[51] / mrlI3[51] / mrtI[52] / mrtR[52] / nfeB(nfe2)[53] / nifQ[54] / nifW[37] / nodO[55] / nodT[56] / noeC[57]
noeJ[58] / noeK[59] / noeL[60] / nolB(nopB)[61] / nolL[62] / nolR[29] / nolT(rhcJ)[63] / nolV(rhcL)[64] / nolW(rhcC1)[65] / nopE1[65]
nopE2[65] / nopM[66] / nopP[67] / nopT[68] / nopX(nolX)[69] / norC[70] / nrfA[71] / oac2[72] / olsC[73] / opa22[74]
opaA[20] / opaB[20] / otsA[75] / pgi[76] / phaA2[49] / phaD2[49] / phaF2[49] / praR[77] / prsD[78] / pssA[79]
pssB[79] / pssC[80] / pssD[80] / pssE[80] / pssM[81] / ptsA(ptsP)[82] / ptsN[82] / purB[83] / purM[84] / rhaK[85]
rhiA[86] / rhiI[86] / rkpF[87] / rkpM[88] / rkpN[88] / rkpO[88] / rkpY[89] / rkpZ[90] / rmrA[91] / ropA[92]
rosR[93] / rtxA[94] / rtxC[94] / sdhA[95] / sdhB[95] / sinR[96] / SMb20651[2] / SMb21071[97] / stoRd[16] / stoRf[16]
sucA[98] / sucD[98] / tep1[99] / treS[75] / treY[100] / treZ/glgB2[75] / trpB[101] / trxL[102] / ttsI[103] / ugdH[45]
virB10[104] / virB11[104] / virB9[104] / virG[105] / visN[105] / visR[106] / visR[105] / wreM[107] / y4wE[108] / y4xP[109]
Non-symbiosis genes.
aapJ[110] / aapM[110] / acnA[111] / acvB[112] / acyl[113] / addA[114] / addB[114] / ahcY[115] / ansA[116] / ansB[116]ansP[116] / ansR[116] / argC[117] / arsC[118] / arsR[119] / asnB[2] / bhuR[120] / bioB[121] / bioF(kbI)[121] / bioH(pcaD)[121]
bioN[121] / bisR(cinR)[122] / blr1087[123] / bmt[115] / cah[115] / ccdA(ccsA)[124] / ccmB[124] / ccmE[125] / ccmF[125] / ccmH[125]
ccmI[125] / cel8A[126] / cgmA[127] / cheD[128] / cheW[128] / cheY[128] / chvE[129] / cinI[130] / cinI[131] / cinR[131]
cinS[132] / coxA[133] / cpaA[134] / Cpn60(groLch1)[135] / ctaC[124] / ctaD[124] / ctaE[124] / ctpA[136] / cyaC[137] / cycM[133]
cysD[138] / cysE[139] / cysG/smrA[140] / cysI[141] / cysI/smrB[140] / cysII/smrC[140] / dapA[142] / dapB[142] / deoR[143] / dnaB[144]
dppA1[145] / eryA[146] / eryB[146] / eryC[146] / eryD[146] / etfL[147] / etfS[147] / exbB[148] / exbD[148] / exsA[149]
fbpA[150] / fegB[151] / fhu2[152] / fhuA[150] / fhuB[153] / fhuC[153] / fhuD[153] / fla[115] / flaA[105] / flaB[105]
flaC[105] / flaD[105] / flaE[105] / flaG[105] / flaH[105] / flbT[115] / flgB[115] / flgC[115] / flgE[115] / flgF[115]
flgG[115] / flgL[115] / fliE[115] / fosX[154] / fsrR[155] / fssA[156] / fumA[157] / gabR[21] / gelA[25] / glcB[158]
glgB[159] / glgC[159] / glgP[159] / glgX[160] / glnA[161] / glsA[162] / groEL5[163] / grpE[163] / gstA1[164] / gstR[164]
gunA2[67] / gyrA[165] / hemA1[166] / hmuP[167] / hmuR[168] / hmuS[169] / hmuT[168] / hmuT[167] / hmuU[167] / hmuU[168]
hmuV[168] / hmuV[167] / hrcA[170] / hrpB[171] / hupC[172] / hupD[173] / hupF[173] / hupK[174] / hupR/hoxA[32] / hupU[175]
hupV[175] / hypC[176] / hypP[177] / hypQ[177] / hypR[177] / hypX[178] / ibpA[163] / infB[179] / intA[180] / irpA[156]
irr[181] / irrA[166] / ISMh2[182] / ispE[183] / katG[38] / kdpA[184] / kdpB[42] / kdpC[185] / kdpC[42] / kdpD[186]
kdpE[187] / kup2[42] / lacA[188] / lpcA[134] / lpcC[134] / lpdA[95] / lpsQ[189] / lpxA[188] / lpxE[190] / lpxE[191]
lpxF[190] / lpxQ[192] / lspDF[183] / matMA[47] / matR[193] / mbfA[156] / mcpA[194] / mcpG[195] / mcpU[115] / metF[115]
metK[115] / midA[196] / midB[196] / midC[196] / midD[196] / midK[197] / midR[198] / mll6785[199] / mlr5434[123] / mlr6792[200]
mlr6793[201] / mntH[202] / mocA[35] / motA[105] / motB[105] / mscL[203] / mutS[204] / nadE1[2] / napE[205] / ngrI[206]
nirB[115] / nirD[115] / nirV[70] / nnrR[70] / nnrU[70] / nopH[68] / norB[207] / norD[207] / norQ[207] / nrtB[115]
opgC[127] / panD[208] / pcaB[209] / pcaC[210] / pcaG[209] / pcaH[209] / pcaQ[209] / pfkB[211] / pgl[68] / phoA[212]
phrR[213] / pobA[214] / prsE[215] / prxS[216] / psiA[212] / psiB[212] / pssL[217] / pssN[217] / pssO[218] / pssP[217]
pssT[217] / pssY[219] / purF[220] / pyrB[221] / qxtA[222] / qxtB[222] / radA[221] / raiR[132] / rbsK[211] / rctA[223]
recF[114] / recG[204] / redA[224] / redB[224] / repA[225] / repB[225] / repC[225] / repC[226] / rgtA[227] / rgtB[227]
rgtC[227] / rhaR[228] / rhaU[229] / rhbA[222] / rhbB[222] / rhbC[222] / rhbE[222] / rhbF[222] / rhcS[63] / rhcT[63]
rhiR[230] / rhtA[222] / rhtX[222] / rinQ[231] / rirA[232] / rmrB[91] / rplC[163] / rpoD[233] / rpoE1[234] / rpoE2[234]
rpoE4[234] / rpoE5[234] / rpoI[235] / rrf2[156] / rrp1[166] / ruvA[236] / ruvB[236] / senC[124] / sigA[233] / SM_b20263[177]
SM_b20264[177] / SMb20650[2] / SMb20804[39] / SMb20805[39] / SMc01505[237] / SMc01615[146] / SMc02655[238] / sorC[146] / speB[117] / sucB[98]
sucC[98] / sufA[222] / sufB[222] / sufC[222] / sufD[222] / sufS(csd)[222] / sufS1[239] / sufS2[239] / sufX[239] / tcrA[155]
tfxG[240] / thiE[241] / thiG[241] / traA2[242] / traI[131] / traI1[243] / traI2[243] / traR[243] / traR[244] / traR[245]
trbLp8[246] / trkA[42] / trkG[42] / trkH[184] / tufA[163] / ureA[247] / ureB[247] / ureC[247] / ureD[248] / ureE[248]
ureF[248] / ureF[249] / vbsA[235] / vbsC[235] / vbsD[235] / vbsG[235] / vbsL[235] / vbsO[235] / vbsP[235] / vbsS[235]
wreA/lpeA[107] / wreB[107] / wreC/nlpE2[107] / wreD[107] / wreF/nlpE1[107] / y4wF[108]
Reference
1.Mao, C., J. Qiu, C. Wang, T.C. Charles, and B.W. Sobral. 2005. NodMutDB: a database for genes and mutants involved in symbiosis.Bioinformatics. 21(12): p. 2927-2929.
2.Ramos-Vega, A.L., Y. Davila-Martinez, C. Sohlenkamp, S. Contreras-Martinez, S. Encarnacion, O. Geiger, and I.M. Lopez-Lara. 2009. SMb20651 is another acyl carrier protein from Sinorhizobium meliloti.Microbiology-Sgm. 155: p. 257-267.
3.Michel-Reydellet, N., N. Desnoues, M. de Zamaroczy, C. Elmerich, and P.A. Kaminski. 1998. Characterisation of the glnK-amtB operon and the involvement of AmtB in methylammonium uptake in Azorhizobium caulinodans.Molecular and General Genetics. 258(6): p. 671-677.
4.Suzuki, T., T. Aono, C.T. Liu, S. Suzuki, T. Iki, K. Yokota, and H. Oyaizu. 2008. An outer membrane autotransporter, AoaA, of Azorhizobium caulinodans is required for sustaining high N-2-fixing activity of stem nodules.FEMS Microbiology Letters. 285(1): p. 16-24.
5.DHooghe, I., C. VanderWauven, J. Michiels, C. Tricot, P. deWilde, J. Vanderleyden, and V. Stalon. 1997. The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes.Journal of Bacteriology. 179(23): p. 7403-7409.
6.Vinuesa, P., F. Neumann-Silkow, C. Pacios-Bras, H.P. Spaink, E. Martinez-Romero, and D. Werner. 2003. Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness.Molecular Plant-Microbe Interactions. 16(2): p. 159-168.
7.Jahn, O.J., G. Davila, D. Romero, and K.D. Noel. 2003. BacS: an abundant bacteroid protein in Rhizobium etli whose expression ex planta requires nifA.Molecular Plant-Microbe Interactions. 16(1): p. 65-73.
8.Guillen-Navarro, K., G. Araiza, A. Garcia-de los Santos, Y. Mora, and M.F. Dunn. 2005. The Rhizobium etlibioMNY operon is involved in biotin transport.FEMS Microbiology Letters. 250(2): p. 209-219.
9.Ausmees, N., H. Jonsson, S. Hoglund, H. Ljunggren, and M. Lindberg. 1999. Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii.Microbiology-Sgm. 145: p. 1253-1262.
10.Medina, C., J.C. Crespo-Rivas, J. Moreno, M.R. Espuny, and M.T. Cubo. 2009. Mutation in the cobO gene generates auxotrophy for cobalamin and methionine and impairs the symbiotic properties of Sinorhizobium fredii HH103 with soybean and other legumes.Archives of Microbiology. 191(1): p. 11-21.
11.Delgado, M.J., K.H. Yeoman, G.H. Wu, C. Vargas, A.E. Davies, R.K. Poole, A.W.B. Johnston, and J.A. Downie. 1995. Characterization of the cycHIJKL genes Involved in Cytochrome-C biogenesis and symbiotic nitrogen-fixation in Rhizobium leguminosarum.Journal of Bacteriology. 177(17): p. 4927-4934.
12.Vargas, C., G.H. Wu, A.E. Davies, and J.A. Downie. 1994. Identification of a gene encoding a thioredoxin-like product necessary for Cytochrome-C biosynthesis and symbiotic nitrogen-fixation in Rhizobium leguminosarum.Journal of Bacteriology. 176(13): p. 4117-4123.
13.Laeremans, T., E. Martinez-Romero, and J. Vanderleyden. 1998. Isolation and sequencing of a second Rhizobium tropici CFN299 genetic locus that contains genes homologous to amino acid sulphate activation genes.DNA Sequence. 9(1): p. 65-70.
14.Labidi, M., S. Laberge, L.P. Vezina, and H. Antoun. 2000. The dnaJ (hsp40) locus in Rhizobium leguminosarum bv. phaseoli is required for the establishment of an effective symbiosis with Phaseolus vulgaris.Molecular Plant-Microbe Interactions. 13(11): p. 1271-1274.
15.Joshi, F., A. Chaudhari, P. Joglekar, G. Archana, and A. Desai. 2008. Effect of expression of Bradyrhizobium japonicum 61A152 fegA gene in Mesorhizobium sp., on its competitive survival and nodule occupancy on Arachis hypogea.Applied Soil Ecology. 40(2): p. 338-347.
16.Granados-Baeza, M.J., N. Gomez-Hernandez, Y. Mora, M.J. Delgado, D. Romero, and L. Girard. 2007. Novel reiterated Fnr-type proteins control the production of the symbiotic terminal oxidase cbb(3) in Rhizobium etli CFN42.Molecular Plant-Microbe Interactions. 20(10): p. 1241-1249.
17.Girard, L., S. Brom, A. Davalos, O. Lopez, M. Soberon, and D. Romero. 2000. Differential regulation of fixN reiterated genes in Rhizobium etli by a novel fixL-fixK cascade.Molecular Plant-Microbe Interactions. 13(12): p. 1283-1292.
18.Colombo, M.V., D. Gutierrez, J.M. Palacios, J. Imperial, and T. Ruiz-Argueso. 2000. A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae.Molecular Microbiology. 36(2): p. 477-486.
19.Clark, S.R.D., I.J. Oresnik, and M.F. Hynes. 2001. RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation.Molecular and General Genetics. 264(5): p. 623-633.
20.Prell, J., A. Bourdes, R. Karunakaran, M. Lopez-Gomez, and P. Poole. 2009. Pathway of gamma-Aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.Journal of Bacteriology. 191(7): p. 2177-2186.
21.Prell, J., B. Boesten, P. Poole, and U.B. Priefer. 2002. The Rhizobium leguminosarum bv. viciae VF39 gamma-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids.Microbiology-Sgm. 148: p. 615-623.
22.Bernardelli, C.E., M.F. Luna, M.L. Galar, and J.L. Boiardi. 2008. Symbiotic phenotype of a membrane-bound glucose dehydrogenase mutant of Sinorhizobium meliloti.Plant and Soil. 313(1-2): p. 217-225.
23.Lorio, J.C., W.S. Kim, A.H. Krishnan, and H.B. Krishnan. 2010. Disruption of the Glycine Cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen fixing nodules on agronomically improved North American soybean cultivars.Applied and Environmental Microbiology. 76(13): p. 4185-4193.
24.Tate, R., A. Riccio, M. Merrick, and E.J. Patriarca. 1998. The Rhizobium etliamtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation.Molecular Plant-Microbe Interactions. 11(3): p. 188-198.
25.Williams, A., A. Wilkinson, M. Krehenbrink, D.M. Russo, A. Zorreguieta, and J.A. Downie. 2008. Glucomannan mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection.Journal of Bacteriology. 190(13): p. 4706-4715.
26.Harrison, J., A. Jamet, C.I. Muglia, G. Van de Sype, O.M. Aguilar, A. Puppo, and P. Frendo. 2005. Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti.Journal of Bacteriology. 187(1): p. 168-174.
27.Napolitani, C., L. Mandrich, A. Riccio, A. Lamberti, G. Manco, and E.J. Patriarca. 2004. Mutational analysis of GstI protein, a glutamine synthetase translational inhibitor of Rhizobium leguminosarum.FEBS Letters. 558(1-3): p. 45-51.
28.Collavino, M., P.M. Riccillo, D.H. Grasso, M. Crespi, and O.M. Aguilar. 2005. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti - Alfalfa symbiotic interaction.Molecular Plant-Microbe Interactions. 18(7): p. 742-750.
29.Vinardell, J.M., F.J. Ollero, A. Hidalgo, F.J. Lopez-Baena, C. Medina, K. Ivanov-Vangelov, M. Parada, N. Madinabeitia, R. Espuny Mdel, R.A. Bellogin, M. Camacho, D.N. Rodriguez-Navarro, M.E. Soria-Diaz, A.M. Gil-Serrano, and J.E. Ruiz-Sainz. 2004. NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103.Molecular Plant-Microbe Interactions. 17(6): p. 676-685.
30.Torres-Quesada, O., R.I. Oruezabal, A. Peregrina, E. Jofre, J. Lloret, R. Rivilla, N. Toro, and J.I. Jimenez-Zurdo. 2010. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.BMC Microbiology. 10.
31.Brito, B., R.I. Prieto, E. Cabrera, M.A. Mandrand-Berthelot, J. Imperial, T. Ruiz-Argueso, and J.M. Palacios. 2010. Rhizobium leguminosarumhupE encodes a nickel transporter required for hydrogenase activity.Journal of Bacteriology. 192(4): p. 925-935.
32.Baginsky, C., J.M. Palacios, J. Imperial, T. Ruiz-Argueso, and B. Brito. 2004. Molecular and functional characterization of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster.FEMS Microbiology Letters. 237(2): p. 399-405.
33.Manyani, H., L. Rey, J.M. Palacios, J. Imperial, and T. Ruiz-Argueso. 2005. Gene products of the hupGHIJ Operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae.Journal of Bacteriology. 187(20): p. 7018-7026.
34.Li, Q., J. Feng, H.L. Hu, X.C. Chen, F.Q. Li, and G.F. Hong. 2004. A HU-like gene mutation in Rhizobium leguminosarum bv. viciae affects the expression of nodulation genes.Molecular Microbiology. 51(3): p. 861-871.
35.Kohler, P.R.A., J.Y. Zheng, E. Schoffers, and S. Rossbach. 2010. Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation.Applied and Environmental Microbiology. 76(24): p. 7972-7980.
36.Fry, J., M. Wood, and P.S. Poole. 2001. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness.Molecular Plant-Microbe Interactions. 14(8): p. 1016-1025.
37.Dombrecht, B., M.Z. Tesfay, C. Verreth, C. Heusdens, M.C. Napoles, J. Vanderleyden, and J. Michiels. 2002. The Rhizobium etli gene iscN is highly expressed in bacteroids and required for nitrogen fixation.Molecular Genetics and Genomics. 267(6): p. 820-828.
38.Hanyu, M., H. Fujimoto, K. Tejima, and K. Saeki. 2009. Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free living and symbiotic conditions.Journal of Bacteriology. 191(5): p. 1463-1471.
39.Muller, M.G., L.S. Forsberg, and D.H. Keating. 2009. The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti Strain Rm1021.Journal of Bacteriology. 191(22): p. 6988-7000.
40.Parada, M., J.M. Vinardell, F.J. Ollero, A. Hidalgo, R. Gutierrez, A.M. Buendia-Claveria, W. Lei, I. Margaret, F.J. Lopez-Baena, A.M. Gil-Serrano, M.A. Rodriguez-Carvajal, J. Moreno, and J.E. Ruiz-Sainz. 2006. Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan.Molecular Plant-Microbe Interactions. 19(1): p. 43-52.
41.Townsend, G.E. and D.H. Keating. 2008. Identification and characterization of KpsS, a novel polysaccharide sulphotransferase in Mesorhizobium loti.Molecular Microbiology. 68(5): p. 1149-1164.
42.Dominguez-Ferreras, A., S. Munoz, J. Olivares, M.J. Soto, and J. Sanjuan. 2009. Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance.Journal of Bacteriology. 191(7): p. 2133-2143.
43.Sohlenkamp, C., K.A. Galindo-Lagunas, Z.Q. Guan, P. Vinuesa, S. Robinson, J. Thomas-Oates, C.R.H. Raetz, and O. Geiger. 2007. The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions.Molecular Plant-Microbe Interactions. 20(11): p. 1421-1430.
44.Ma, W., T.C. Charles, and B.R. Glick. 2004. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa.Applied and Environmental Microbiology. 70(10): p. 5891-5897.
45.Quelas, J.I., E.J. Mongiardini, A. Casabuono, S.L. Lopez-Garcia, M.J. Althabegoiti, J.M. Covelli, J. Perez-Gimenez, A. Couto, and A.R. Lodeiro. 2010. Lack of galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to different symbiotic responses in soybean.Molecular Plant-Microbe Interactions. 23(12): p. 1592-1604.
46.An, J.H., H.Y. Lee, K.N. Ko, E.S. Kim, and Y.S. Kim. 2002. Symbiotic effects of delta matB Rhizobium leguminosarum bv. trifolii mutant on clovers.Molecules and Cells. 14(2): p. 261-266.
47.Chen, A.M., Y.B. Wang, S. Jie, A.Y. Yu, L. Luo, G.Q. Yu, J.B. Zhu, and Y.Z. Wang. 2010. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.Research in Microbiology. 161(7): p. 556-564.
48.Yost, C.K., P. Rochepeau, and M.F. Hynes. 1998. Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins.Microbiology-Sgm. 144: p. 1945-1956.
49.Jiang, J.Q., W. Wei, B.H. Du, X.H. Li, L. Wang, and S.S. Yang. 2004. Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium fredii RT19 detected by isolation and characterization of Tn5 mutants.FEMS Microbiology Letters. 239(1): p. 139-146.
50.Tate, R., A. Riccio, E. Caputo, M. Iaccarino, and E.J. Patriarca. 1999. The Rhizobium etlimetZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris.Molecular Plant-Microbe Interactions. 12(1): p. 24-34.
51.Yang, M.H., K.J. Sun, L. Zhou, R.F. Yang, Z.T. Zhong, and J. Zhu. 2009. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation.Canadian Journal of Microbiology. 55(2): p. 210-214.
52.Zheng, H.M., Z.T. Zhong, X. Lai, W.X. Chen, S.P. Li, and J. Zhu. 2006. A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation.Journal of Bacteriology. 188(5): p. 1943-1949.
53.Soto, M.J., A. Zorzano, F.M. Garciarodriguez, J. Mercadoblanco, I.M. Lopezlara, J. Olivares, and N. Toro. 1994. Identification of a novel Rhizobium meliloti nodulation efficiency nfe gene homolog of agrobacterium ornithine cyclodeaminase.Molecular Plant-Microbe Interactions. 7(6): p. 703-707.
54.Suominen, L., L. Paulin, A. Saano, A.M. Saren, E. Tas, and K. Lindstrom. 1999. Identification of nodulation promoter (nod-box) regions of Rhizobium galegae.FEMS Microbiology Letters. 177(2): p. 217-223.
55.Sutton, J.M., J. Peart, G. Dean, and J.A. Downie. 1996. Analysis of the C-terminal secretion signal of the Rhizobium leguminosarum nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion.Molecular Plant-Microbe Interactions. 9(8): p. 671-680.
56.Pinto, F.G.S., L.M.O. Chueire, A.T.R. Vasconcelos, M.F. Nicolas, L.G.P. Almeida, R.C. Souza, P. Menna, F. Barcellos, M. Megias, and M. Hungria. 2009. Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81.Functional and Integrative Genomics. 9(2): p. 263-270.
57.Mergaert, P., W. DHaeze, M. FernandezLopez, D. Geelen, K. Goethals, J. ClaudeProme, M. VanMontagu, and M. Holsters. 1996. Fucosylation and arabinosylation of Nod factors in Azorhizobium caulinodans: Involvement of nolK, nodZ as well as noeC and/or downstream genes.Molecular Microbiology. 21(2): p. 409-419.
58.Ormeno-Orrillo, E., M. Rosenblueth, E. Luyten, J. Vanderleyden, and E. Martinez-Romero. 2008. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899.Environmental Microbiology. 10(5): p. 1271-1284.
59.Lamrabet, Y., R.A. Bellogn, T. Cubo, R. Espuny, A. Gil, H.B. Krishnan, M. Megias, F.J. Ollero, S.G. Pueppke, and J.E. Ruiz-Sainz. 1999. Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans.Molecular Plant-Microbe Interactions. 12(3): p. 207-217.
60.Jabbouri, S., B. Relic, M. Hanin, P. Kamalaprija, U. Burger, D. Prome, J.C. Prome, and W.J. Broughton. 1998. nolO and noeL (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors.Journal of Biological Chemistry. 273(20): p. 12047-12055.
61.Perret, X., W.J. Broughton, and S. Brenner. 1991. Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234.Proceedings of the National Academy of Sciences of the United States of America. 88(5): p. 1923-1927.
62.Rodpothong, P., J.T. Sullivan, K. Songsrirote, D. Sumpton, K.W.J.T. Cheung, J. Thomas-Oates, S. Radutoiu, J. Stougaard, and C.W. Ronson. 2009. Nodulation gene mutants of Mesorhizobium loti R7A nodZ and nolL mutants have host-specific phenotypes on Lotus spp. Molecular Plant-Microbe Interactions. 22(12): p. 1546-1554.