Table S1. Proteases inhibited by TLCK, TPCK, PMSF, MG-132, PSI, LC, CLC, Ca I I and Ca I II. A) ReportedIC50 for the proteasome and calpains. B) Reported IC50 for the other cysteine and serine proteases

Table 1 A
Inhibitor / Effect on proteases, IC50 (M)
Proteasome / Calpains
Cht-Ac / T-Ac / Pg-Ac (C-Ac) / Ca I / Ca II
TLCK / NE[1] / NE [1]
TPCK / NE [1] / NE [1]
PMSF / NE [2] / NE [2] / NE [2]
MG-132 * / < 10/ 0.85 [3]/[4] / > 20 [4] / NE [4] / 1.2 [4]
PSI / 0.25-6.5 [5] / > 65 [5] / > 65 [5] / 4 [5]
LC / < 1
[6; 7] / < 1[6; 7] / < 1 [6; 7] / NE [8] / NE [8]
CLC / < 1 [6; 7] / < 1 [6; 7] / < 1 [6; 7]
CaI I * / 0.14 / 10 [9]/[10] / 0.67 / > 50 [9] / [10] / 1.2/ > 50 [9] / [10]] / 0.005/0.19 [9]/[11] / 0.22 [11]
CaI II * / 1/ 25 [9; 10] / 28 / > 50 [9; 10] / > 50 [10] / 0.009/ 0.12[9]/ [11] / 0,23 [11]

1

Table 1 B
Inhibitor / Effect on proteases, IC50 (M)
Cysteine proteases / Serine proteases
Cat A-Ac / Cat L / Cat B / Cat D / Cat H / Pap / Trypsin / Cht / Pl / PA
TLCK / +[12] / + [13; 14] / NE [13]
TPCK / + [12] / NE [13] / + [13]
PMSF / + [15] / + [16] / + [16]
MG-132
PSI
LC / < 1 [17] / NE [8] / NE [8] / NE [8; 13] / NE [13] / NE[8]
CLC / NE [13] / NE [13]
CaI I / 0.007/0.0005 [18]/ [Sasaki, 1990] / 0.005-0.012/0.013/0.15 [18]/[9]/[11] / 9.4 [18] / > 10 [11] / > 250 /NE [18]/[11] / > 250/ ¤ [18]/[11] / > 250[18]
CaI II / 0.03/ 0.0006[18]/[11] / 0.005-0.012/0.06 / 0.1 [18]/[9]/[11] / 360 [18] / > 10 [11] / > 250/ NE [18]/[11] / 250/ ¤¤ [18]/[11] / > 250 [18]

Abbreviations: Cht-Ac= chymotrypsin-like activity, T-Ac: trypsin-like activity; Pg-Ac (C-Ac): peptidyl-glutamyl-like activity (caspase-like activity); Ca I: calpain I; Ca II: calpain II; Cat A-Ac: cathepsin A-like activity; Cat L: cathepsin L; Cat B: cathepsin B; Cat D: cathepsin D; Cat H: cathepsin H; Pap: papain; Cht: chymotrypsin; Pl: plasmin; PA: plasminogen activator; NE: no effect ; + : inhibitor but IC50 not reported; ¤ : ~ 50 % inhibition at 50 M [11]; * : MG-132, Ca I I and Ca I II are also potent inhibitors of the caseinolytic activity of the proteasome (IC50 = 0.1, 7 and 12 M, respectively [4; 5]; ¤¤ : ~ 30 % inhibition at 50 M [11]. References are bold numbered in brackets..

References

1. Hua S, To WY, Nguyen TT, Wong ML, Wang CC (1996) Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol78:33-46

2. Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem267:22369-22377

3. Lee DH, Goldberg AF (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem271:27280-27284

4. Tsubuki S, Saito Y, Tomioka M, Ito H, Kawashima S (1996) Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem119:572-576

5. Figueiredo-Pereira ME, Berg KA, Wilk S (1994) A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J Neurochem63:1578-1581

6. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri F, D.,, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem272:182-188

7. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science268:726-731

8. Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem273:8545-8548

9. Rock KL, Gramm C, Rothstein L, Clark K, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78:761-771

10. Figueiredo-Pereira ME, Banik N, Wilk S (1994) Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain. J Neurochem62:1989-1994

11. Sasaki T, Kishi M, Saito M, Tanaka T, Higuchi N, Kominami E, Katunuma N, Murachi T (1990) Inhibitory effect of di- and tripeptidyl aldehydes on calpains and cathepsins. J Enzyme Inhib3:195-201

12. Wolthers BC (1969) Kinetics of inhibition of papain by TLCK and TPCK in the presence of BAEE as substrate. FEBS Lett2:143-145

13. Fearnhead HO, Rivett AJ, Dinsdale D, Cohen GM (1995) A pre-existing protease is a common effector of thymocyte apoptosis mediated by diverse stimuli. FEBS Lett357:242-246

14. Petra PH, Cohen W, Shaw EN (1965) Isolation and characterization of the alkylated histidine from TLCK inhibited trypsin. Biochem Biophys Res Commun21:612-618

15. Whitaker JR, Perez-Villaseñor J (1968) Chemical modification of papain. I. Reaction with the chloromethyl ketones of phenylalanine and lysine and with phenylmethyl-sulfonyl fluoride. Arch Biochem Biophys124:70-78

16. Wyrick S, Kim YJ, Ishaq K, Chae CB (1979) Synthesis of active site-directed organometallic irreversible protease inhibitors. Biochim Biophys Acta568:11-18

17. Ostrowska H, Wojcik C, Omura S, Worowski K (1997) Lactacystin, a specific inhibitor of the proteasome, inhibits the human platelet lysosomal cathepsin A-like enzyme. Biochem Biophys Res Commun234:729-732

18. Hiwasa T, Sawada T, Sakiyama S (1990) Cysteine protease inhibitors and ras gene products share the same biological activities including transforming activity toward NIH3T3 mouse fibroblast and the differentiation-inducing activity toward PC12 rat pheochromocytoma cells. Carcinogenesis11:75-80

1