Table S1: Mechanical Properties for the Dragline Silk of Spiders from the Araneomorphae

Table S1: Mechanical Properties for the Dragline Silk of Spiders from the Araneomorphae

Table S1: Mechanical properties for the dragline silk of spiders from the Araneomorphae suborder. All measurements were conducted at room temperature; the relative humidity ranged between typically 30 and 65 %; only studies with more than one fiber tested were considered. Additional true scales data are available for genera Argiope (2 species), Cyclosa (2), Cyrtophora (2) and Leucage (2) [1].

Family / Species / # of tests / Scales / Silk collectiona / Gauge length (mm) / Strain rate (%/min) / Diam.(µm) / Strength (MPa) / Breaking strain (%) / Young's modulus (GPa) / Toughness(MJ/m3) / Ref.
Araneidae / Araneus diadematus / 44
11
16
15
38
100
46
20 / Eng.
Eng.
Eng.
Eng.
Eng.
Eng.
Eng.
Eng. / Web
Grav
FS
FS
Web
FS
FS
FS / 38
38
38
-
12.7
12.7
12.7
12.7 / 33
33
33
50
100
100
100
100 / 3.11
2.71
2.80
-
3
2.5
2.9
1.8 / 1000b
1200b
1055b
1670
1120b
1200b
720b
690b / 33.5
31.8
25.7
24
40
35
34
32 / -
-
-
10.4
4.8b
7.3b
4.6b
6.9b / -
-
-
225
-
-
-
- / [2]
[2]
[2]
[3]
[4]
[4]
[4]
[4]
Araneus gemma / 18 / Eng. / Web / 38 / 33 / 3.59 / 1015 / 33.4 / - / - / [2]
Araneus gemmoides / 10
23 / Eng.
Eng.c / FS
FS / 40
21 / 12.5
60 / 2.5
- / 4700
1060 / 15
29 / -
8.3 / -
141.2 / [5]
[6]
Araneus sericatusd / 60
60
8
10
8
60 / Eng.
Eng.
Eng.
Eng.
Eng.
Eng. / Web
Web
Web
Grav
FS
Web / -
-
38
38
38
- / 3
14
33
33
33
140 / 1.9
1.9
1.40
2.66
1.80
1.9 / 810
880
1055b
940b
1325b
1420 / 24
24
23.2
23.5
32
27 / 9.81
8.62
-
-
-
20.5 / 91.3
105.6
-
-
-
158 / [7]
[7]
[2]
[2]
[2]
[7]
Araneus ventricosus / 20
20 / Eng. / FS
Grav / 10
10 / 100
100 / - / 1070
1780 / 26
35 / - / - / [8]
Argiope argentata / 14
62
9
2 / Eng.
Eng.c
Eng.
Eng. / FS
FS
Web
FSf / -
21
12.7
50.8 / 50
60
100
100 / -
3.5e
6.23
2.2b / 1910
1200
970b
430b / 24
23
42
17.2 / 11.1
8.2
5.1b
3.9b / 225
116.3
-
- / [3]
[6]
[4]
[9]
Argiope aurantia / 32
13
30
15
6 / Eng.
Eng.
Eng.
Eng.
Eng. / Web
Web
FS
FS
FSf / 12.7
12.7
12.7
12.7
50.8 / 100
100
100
100
100 / 4.8
4.2
4.29
2.93
4.6b / 965b
1080b
580b
720b
835b / 35
32
22
24
20.6 / 5.1b
5.2b
6.1b
5.0b
10.7b / -
-
-
-
- / [4]
[4]
[4]
[4]
[9]
Argiope bruennichi / >1 / Eng. / - / 20 / 50 / 3.47 / 1320 / 22 / 11.8 / 134.5 / [10]
Argiope lobata / 12 / Eng. / FS / - / 50 / - / 1520 / 24 / 12 / 196 / [3]
Argiope trifasciata / 28
10
14 / Eng.
True
Eng. / Web
FS
FS / 20
20
21 / 1.2
5
60 / 6.6
3.0
3.24 / 600
1300
1290 / 30
17
22 / 6.9
10.7
9.3 / 90
240
145 / [11]
[12]
[13]
Cyrtophora citricola / 13 / Eng. / FS / - / 50 / 4.3g / 1650 / 24 / 18 / 231 / [3]
Euriophora fuligenia / 4
42 / Eng. / Web
FS / 12.7
12.7 / 100
100 / 5.55
4.21 / 980b
500b / 26
22 / 8.5b
5.5b / -
- / [4]
[4]
Nuctenea sclopetaria / 11 / Eng. / FS / - / 50 / - / 1660 / 24 / 13 / 245 / [3]
Parawixia audax / 9 / Eng. / FSf / 50.8 / 100 / 3.3b / 535b / 27.2 / 3.5b / - / [9]
Filistatidae / Kukulcania hibernalis / 102 / Eng.c / Hori / 21 / 60 / - / 830 / 26 / 22.2 / 132.2 / [6]
Nephilidae / Nephila clavata / 5 / True / FS / 25 / 60 / - / 665 / 20 / 8.2 / 115 / [1]
Nephila clavipes / 10
10
66
43
47 / Eng.
Eng.
Eng.c
Eng.
Eng. / FS
FS
FS
FS
FSf / 5
40
21
12.7
50.8 / 6
12.5
60
100
100 / 5.23
-
-
-
4.4b / 830
4600
1000
820b
840b / 12
23
20
17
16.6 / 12.1
-
13.8
10.6b
10.6b / 63.2
-
111.2
-
- / [14]
[5]
[6]
[4]
[9]
Nephila cruentata / 12 / Eng. / FSf / 50.8 / 100 / 5.5b / 520b / 18.5 / 4.7b / - / [9]
Nephila edulis / 12
21
15 / Eng.
Eng.
Eng. / FS
FS
FS / 6.9
12
- / 45
50
50 / 3.57
3.35
- / 1290
1150
1440 / 39
39
24 / 8.7
7.9
16.6 / 217
220b
198 / [15]
[16]
[3]
Nephila inaurata
(Walckenaer, 1841) / 10 / True / FS / 20 / 5 / 5.9 / 1800 / 26 / 14.2 / 264 / [12]
Nephila inaurata madagascariensis
(Vinson, 1863) / 60 / Eng.
True / FS / 30 / 7 / 8.7 / 645
830 / 28
25 / 8.2
8.3 / 270 / This study
Nephila pilipes / 5 / True / FS / 25 / 60 / - / 515 / 30 / 6.2 / 77 / [1]
Nephila senegalensis / 13 / Eng. / FS / - / 50 / - / 1840 / 24 / 15.4 / 284 / [3]
Plectreuridae / Plectreurys tristis / 108 / Eng.c / Hori / 21 / 60 / - / 640 / 29 / 16.1 / 112.1 / [6]
Tetragnathidae / Leucauge venusta / 61 / Eng.c / Grav / 21 / 60 / - / 1200 / 27 / 10.6 / 151 / [6]
Theridiidae / Latrodectus hesperush / 10
70
52
30 / Eng.
Eng.c
True
Eng.c / FS
FS
FS
Web / -
21
21
12 / 50
60
60
105 / -
-
2-2.5
4 / 1440
1000
996
1100 / 24
45
33
22 / 17.3
10.2
10.4
- / 243
180.9
194
136 / [3]
[6]
[17]
[18]

a Grav : silked by a suspending spider, FS : forced silking, Web : taken from the web, Hori : obtained from a spider trailing along an horizontal surface.

b Calculated from the original data assuming a density of 4/3 (Zemlin measured d = 1.35 g.cm-3 for Argiope aurantia and Nephila clavipes spiders [9]).

c The authors also calculated true stress vs. true strain tensile curves but did not disclose the resulting average values.

d The taxonomic classification was changed to Latinioides sclopetarius in 2010 [17].

e Value from the same research team [19].

f Most fibers tested in this reference had been obtained by forced silking.

g Value from Peters [20].

h The average diameter for Lactodestrus hesperus "Grav" fibers is 3.3 µm [21].

References

[1]Blamires SJ, Wu C-L, Blackledge TA, Tso I-M (2012) Post-secretion Processing Influences Spider Silk Performance, J. R. Soc. Interface 9: 2479-2487.

[2]Work RW (1977) Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders—The Effects of Wetting on these Properties Textile Research Journal 47: 650-662.

[3]Liu Y, Sponner A, Porter D, Vollrath F (2008) Proline and Processing of Spider Silks, Biomacromolecules 9: 116-121.

[4]Work RW (1976) The Force-Elongation Behavior of Web Fibers and Silks Forcibly Obtained from Orb-Web-Spinning Spiders, Textile Research Journal: 485-491.

[5]Stauffer S, Coguill SL, Lewis RV (1994) Comparison of Physical Properties of Three Silks from Nephila Clavipes and Araneus Gemmoides, J. Arachno 22: 5-11.

[6]Swanson BO, Blackledge TA, Beltran J, Hayashi CY (2006) Variation in the Material Properties of Spider Dragline Silk Across Species, Applied Physics A 82: 213-218.

[7]Denny M (1976) The Physical Properties of Spider's Silk and Their Role in the Design of Orb-webs, J. Exp. Biol. 65: 483-506.

[8]Pan ZJ, Li CP, Xu Q (2004) Active Control on Molecular Conformations and Tensile Properties of Spider Silk, J. Appl. Polym. Sci. 92: 901-905.

[9]Zemlin JC (1968) A Study of the Mechanical Behavior of Spider Silks, Technical report 69-29-CM, U.S. Army Natick Laboratories, Natick, MA.

[10]Zhao A-C, Zhao T-F, Nakagaki K et al (2006) Novel Molecular and Mechanical Properties of Egg Case Silk from Wasp Spider, Argiope bruennichi, Biochem. 45: 3348-3356.

[11]Pérez-Rigueiro J, Elices M, Llorca J, Viney C (2001) Tensile Properties of Argiope Trifasciata Drag Line Silk Obtained from the Spider's Web, J. Appl. Polym. Sci. 82: 2245-2251.

[12]Guinea GV, Elices M, Plaza GR et al (2012) Minor Ampullate Silks from Nephila and Argiope Spiders: Tensile Properties and Microstructural Characterization, Biomacromolecules 13: 2087-2098.

[13]Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and Mechanical Characterization of Aciniform Silk: Uniformity of Iterated Sequence Modules in a Novel Member of the Spider Silk Fibroin Gene Family, Mol. Biol. Evol. 21: 1950-1959.

[14]Hudspeth M, Nie X, Chen W, Lewis R (2012) Effect of Loading Rate on Mechanical Properties and Fracture Morphology of Spider Silk, Biomacromolecules 13: 2240-2246.

[15]Madsen B and Vollrath F (2000) Mechanics and Morphology of Silk Drawn from Anesthetized Spiders, Naturwissenschaften 87: 148-153.

[16]Vollrath F, Madsen B, Zhao Z (2001) The Effect of Spinning Conditions on the Mechanics of a Spider's Dragline Silk, Proc. R. Soc. Lond. B 268: 2339-2346.

[17]Blackledge TA, Cardullo RA, Hayashi CY (2005) Quasistatic and Continuous Dynamic Characterization of the Mechanical Properties of Silk from the Cobweb of the Black Widow Spider Latrodectus hesperus, J. Exp. Biol. 208: 1937-1949.

[18]Moore AMF and Tran K (1999) Material Properties of Cobweb Silk from the Black Widow Spider Latrodectus Hesperus, Int. J. Biol. Macromol. 24: 277-282.

[19]Blackledge TA and Hayashi CY (2006) Silken Toolkits: Biomechanics of Silk Fibers Spun by the Orb Web Spider Argiope Argentata (Fabricius 1775), J. Exp. Biol. 209: 2452-2461.

[20]Peters HM (1993) Functional Organization of the Spinning Apparatus of Cyrtophora citricola with Regard to the Evolution of the Web (Araneaa, Araneidae), Zoomorphology 113: 153-163.

[21]Lawrence BA, Vierra CA, Moore AMF (2004) Molecular and Mechanical Properties of Major Ampullate Silk of the Black Widow Spider, Latrodectus hesperus, Biomacromolecules 5: 689-695.