Table S1.Activators and non-activators of the mitochondieal UPR
Activators
Chr I
/ Non-activatorsChr I
# / Gene name /
Description
/Class
/ # / Gene name /Description
/Class
1 / Y18H1A.6, pif1 / Mitochondrial DNA helicase / Mitochondrial DNA maintainance / 1 / Y71F9B.9 / Similar to mitochondrial Hydroxyacyl-coA dehydrogenase / Soluble, homodimer2 / Y47G6A_247.f, spg7 / Mitochondrial protease / Membrane,proteolysis / 2 / C32E8.9 / Enoyl-coAhydratase / Soluble, homoexamer
3 / R12E2.12 / Mitochondrial ribosomal protein S6 / Mitochondrial protein synthesis / 3 / T09B4.8 / Mitochondrial alanine-glyoxilate aminotransferase / Soluble, monomeric
4 / C43E11.4 / Mitochondrial elongation factor EF-TU / Mitochondrial protein synthesis / 4 / T08B2.7 / Enoyl-coA hydratase / Soluble, homoexamer
5 / ZK973.10 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 5 / K06A5.6 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
6 / D1007.6 / Cytosolic ribosomal protein (rps-10) / Cytoplasmic Protein synthesis / 6 / C55B7.4 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
7 / D1007.12 / Cytosolic ribosomal protein (rpl-24) / Cytoplasmic Protein synthesis / 7 / T10E9.9 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
8 / B0261.4 / Mitochondrial ribosomal protein L47 / Mitochondrial protein synthesis / 8 / W02D3.6 / ATP-ADP transporter / Membrane, monomeric
9 / T19B4.4 / Dnj-21, DNAJ homologue / Chaperone, unknown localization / 9 / W02D3.2 / Mitochondrial dihydroorotate dehydrogenase / Membrane, monomeric
10 / T09B4.9 / Tim44p homologue / Mitochondrial membrane, multimeric / 10 / C37A2.3 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
11 / T08B2.8 / Mitochondrial ribosomal protein L23 / Mitochondrial protein synthesis / 11 / C30F12.7 / Isocitrate dehydrogenase subunit / Soluble, multimeric
12 / T10E9.7 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 12 / F13G3.7 / Mitochondrial carrier / Membrane, monomeric
13 / F22D6.4 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 13 / T25G3.4 / Mitochondrial glycerol 3phosphate dehydrogenase homolog / Soluble, homodimer
14 / WO1A8.4 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 14 / F27D4.5 / Mitochondrial 2-oxoisovalerate dehydrogenase beta subunit / Soluble, multimeric
15 / R06C7.7,
Rls1 /
Polycomb group
/ Transcription repressor / 15 / F30F8.2 / Mitochondrial glutaminase / Soluble, monomeric16 / F52A8.5 / Mitochondrial glycine cleavage system protein H / Mitochondrial, multimeric / 16 / F10D11.1 / Sod-2 / Soluble, homotetramer
17 / C25A1.7,
lrs2 / Mitochondrial isoleucyl-tRNA transferase / Mitochondrial protein synthesis / 17 / F43G9.3 / Mitochondrial carrier / Membrane, monomeric
18 / D2030.4 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 18 / T05F1.8 / Mitochondrial carrier / Membrane, monomeric
19 / F27D4.1 / Electron transfer flavoprotein -subunit / Mitochondrial matrix, multimeric / 19 / C34B2.6 / Similar to lon proteases / Membrane, proteolysis
20 / C54G4.8 / Cytochrome c1 / Mitochondrial membrane, multimeric / 20 / C34B2.7 / Succinate dehydrogenase complex subunit / Membrane, multimeric
21 / F43G9.1 / Isocitrate dehydrogenase subunit / Mitochondrial, multimeric / 21 / T26E3.7 / ATP synthase alpha chain / Membrane, multimeric
22 / K07A12.3 / ATP synthase subunit gamma / Mitochondrial membrane, multimeric / 22 / F39B2.11 / Metataxin homolog / Membrane, protein import
23 / F25H5.6 / Mitochondrial ribosomal subunit L54 / Mitochondrial protein synthesis / 23 / Y71F9B.9 / Similar to mitochondrial Hydroxyacyl-coA dehydrogenase / Soluble, homodimer
24 / F26E4.6 / Cytochrome c oxidase subunit / Mitochondrial membrane, multimeric / 24 / C32E8.9 / Enoyl-coAhydratase / Soluble, homohexamer
25 / F26E4.9 / Cytochrome c oxidase subunit / Mitochondrial membrane, multimeric / 25 / T09B4.8 / Mitochondrial alanine-glyoxilate aminotransferase / Soluble, monomeric
26 / F59C6.5 / NADH-coQ oxidoreductase subunit / Mitochondrial membrane, multimeric / 26 / T08B2.7 / Enoyl-coA hydratase / Soluble, homohexamer
27 / B0511.8 / Mitochondrial ribosomal protein S30 / Mitochondrial protein synthesis / 27 / K06A5.6 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
28 / H28O16.1 / ATP synthase -chain (F1F0) / Mitochondrial membrane, multimeric / 28 / C55B7.4 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
29 / C01A2.3 / Cytochrome oxidase biogenesis;oxa1p homologue / Mitochondrial membrane, protein processing / 29 / T10E9.9 / Acyl-coA dehydrogenase homolog / Soluble, homotetramer
30 / W09C5.8 / Cytochrome c oxidase subunit IV / Mitochondrial membrane, multimeric / 30 / W02D3.6 / ATP-ADP transporter / Membrane, monomeric
31 / Y92H12BR.8 / Mitochondrial ribosomal protein L15 / Mitochondrial protein synthesis
32 / K11B4.1 / Mitochondrial ribosomal protein S27 / Mitochondrial protein synthesis
Chr III
# / Gene name /
Description
/Class
1 / F54h12.1a, aco2 / Mitochondrial aconitase / Soluble, monomeric2 / F20H11.3, mdh1 / Mitochondrial malate dehydrogenase / Soluble, homodimer/tetramer
3 / H14A12.2a, fum1 / Mitochondrial fumarase / Soluble, homotetramer
4 / T20G5.2,
cit1 / Mitochondrial citrate synthase / Soluble, monomeric
Activators: The genes on chromosome I in the interval between Y48G1C and unc13 whose RNAi activated hsp6::gfp and hsp60::gfp.
Non-activators: The genes encoding predicted mitochondrial protein, localized to the above interval that did not activate hsp6::gfp and hsp60::gfp. Also listed under non-activators are four genes from chromosome III encoding enzymes of the tri-carboxylic acid cycle and whose RNAi presumably results in a severe disruption of mitochondrial metabolism reflected in a high incidence of larval arrest and embryonic lethality(Kamath et al., 2003) but whose effect on hsp6::gfp and hsp60::gfp is confined to late induction in adult RNAi animals (in the case of aco2 and cit1).
Description: the predicted protein function.
Class: the hypothesized mechanism by which the RNAi procedure perturbs (or fails to perturb) protein processing in the mitochondria (see text for further discussion).
References
1.Zhou, J. Q., Qi, H., Schulz, V. P., Mateyak, M. K., Monson, E. K. and Zakian, V. A. (2002). Schizosaccharomyces pombe pfh1+ encodes an essential 5 to 3 DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol. Biol. Cell13, 2180-2191
2.Barycki, J. J., O’Brien, L. K., Bratt, J. M., Zhang, R., Sanishvili, R., Strauss, A. W. and Banaszak, L. J. (1999). Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry38, 5786-5798.
3.Arlt, H., Tauer, R., Feldmann, H., Neupert, W. and Langer, T. (1996). The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell85, 875-885.
4.Agnihotri, G. and Liu, H. (2003). Enoyl-CoA hydratase. Reaction, mechanism, and inhibition. Bioorg. Med. Chem.11, 9-20.
5.Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A. and Watanabe, K. (2001). Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J. Biol. Chem. 276, 33181-33195.
6.Danpure, C. J. (1997).Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. BioEssays19, 317-326.
7.Woriax, V. L., Burkhart, W. and Spremulli, L. L. (1995). Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim. Biophys. Acta1264, 347-356.
8.Loeffen, J. L., Triepels, R. H., van den Heuvel, L. P., Schuelke, M., Buskens, C. A., Smeets, R. J., Trijbels, J. M. and Smeitink, J. A. (1998). cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed. Biochem. Biophys. Res. Commun.253, 415-422.
9.Battaile, K. P., Molin-Case, J., Paschke, R., Wang, M., Bennett, D., Vockley, J. and Kim, J. J. (2002). Crystal structure of rat short chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA: comparison with other acyl-CoA dehydrogenases. J. Biol. Chem.277, 12200-12207.
10.Planta, R. J. and Mager, W. H. (1998). The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast14, 471-477.
11.Graack, H. R. and Wittmann-Liebold, B. (1998). Mitochondrial ribosomal proteins (MRPs) of yeast. Biochem. J.329, 433-448.
12.Cozens, A. L., Runswick, M. J. and Walker, J. E. (1989). DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J. Mol. Biol.206, 261-280.
13.Shridhar, V., Bible, K. C., Staub, J., Avula, R., Lee, Y. K., Kalli, K., Huang, H., Hartmann, L. C., Kaufmann, S. H. and Smith, D. I. (2001). Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res.61, 4258-4265.
14.Minet, M., Dufour, M. E. and Lacroute, F. (1992). Cloning and sequencing of a human cDNA coding for dihydroorotate dehydrogenase by complementation of the corresponding yeast mutant. Gene121, 393-396.
15.Rehling, P., Wiedemann, N., Pfanner, N. and Truscott, K. N. (2001). The mitochondrial import machinery for preproteins. Crit. Rev. Biochem. Mol. Biol.36, 291-336.
16.Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J. and Huh, T. L. (1999). Identification and functional characterization of a novel, tissue-specific NAD(+)-dependent isocitrate dehydrogenase beta subunit isoform. J. Biol. Chem.274, 36866-36875.
17.Pilkington, S. J., Skehel, J. M. and Walker, J. E. (1991). The 30-kilodalton subunit of bovine mitochondrial complex I is homologous to a protein coded in chloroplast DNA. Biochemistry30, 1901-1908.
18.Belenkiy, R., Haefele, A., Eisen, M. B. and Wohlrab, H. (2000). The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. Biochim. Biophys. Acta1467, 207-218.
19.Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J. and Skehel, J. M. (1992). Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Mol. Biol.226, 1051-1072.
20.Suresh, S., Turley, S., Opperdoes, F., Michels, P. and Hol, W. (2000). A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure Fold Des.8, 541-552.
21.Nobukuni, Y., Mitsubuchi, H., Endo, F., Akaboshi, I., Asaka, J. and Matsuda, I. (1990). Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease. J. Clin. Invest.86, 242-247.
22.Farrer, T., Roller, A., Kent, W. and Zahler, A. (2002). Analysis of the role of Caenorhabditis elegans GC-AG introns in regulated splicing. Nucleic Acid Res.30, 3360-3367.
23.Gomez-Fabre, P. M., Aledo, J. C., Del Castillo-Olivares, A., Alonso, F. J., Nunez De Castro, I., Campos, J. A. and Marquez, J. (2000).Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem. J.345, 365-375.
24.Koyata, H. and Hiraga, K. (1991). The glycine cleavage system: structure of a cDNA encoding human H-protein, and partial characterization of its gene in patients with hyperglycinemias. Am. J. Hum. Genet.48, 351-361.
25.Wispe, J. R., Clark, J. C., Burhans, M. S., Kropp, K. E., Korfhagen, T. R. and Whitsett, J. A. (1989). Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim. Biophys. Acta994, 30-36.
26.Lee, S. S., Lee, R. Y., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet.33, 40-48.
27.Prohl, C., Pelzer, W., Diekert, K., Kmita, H., Bedekovics, T., Kispal, G. and Lill, R. (2001). The yeast mitochondrial carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of coenzyme A in the matrix. Mol. Cell Biol.21, 1089-1097.
28.Takabatake, R., Siddique, A. B., Kouchi, H., Izui, K. and Hata, S. (2001). Characterization of a Saccharomyces cerevisiae gene that encodes a mitochondrial phosphate transporter-like protein. J. Biochem. (Tokyo)129, 827-833.
29.Finocchiaro, G., Ito, M., Ikeda, Y. and Tanaka, K. (1988). Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J. Biol. Chem.263, 15773-15780.
30.Amerik, A., Petukhova, G. V., Grigorenko, V. G., Lykov, I. P., Yarovoi, S. V., Lipkin, V. M. and Gorbalenya, A. E. (1994). Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases. FEBS Lett. 340, 25-28.
31.Wakabayashi, S., Matsubara, H., Kim, C. H. and King, T. E. (1982). Structural studies of bovine heart cytochrome c1. J. Biol. Chem.257, 9335-9344.
32.Hirawake, H., Wang, H., Kuramochi, T., Kojima, S. and Kita, K. (1994). Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of the flavoprotein (Fp) subunit of liver mitochondria. J. Biochem.116, 221-227.
33.Kim, Y. O., Oh, I. U., Park, H. S., Jeng, J., Song, B. J. and Huh, T. L. (1995). Characterization of a cDNA clone for human NAD (+)-specific isocitrate dehydrogenase alpha-subunit and structural comparison with its isoenzymes from different species. Biochem. J.308, 63-68.
34.Collinson, I. R., Fearnley, I. M., Skehel, J. M., Runswick, M. J. and Walker, J. E. (1994). ATP synthase from bovine heart mitochondria: identification by proteolysis of sites in F0 exposed by removal of F1 and the oligomycin-sensitivity conferral protein. Biochem. J.303, 639-645.
35.Bornstein, P., McKinney, C. E., LaMarca, M. E., Winfield, S., Shingu, T., Devarayalu, S., Vos, H. L. and Ginns, E. I. (1995). Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: implications for Gaucher disease. Proc. Natl. Acad. Sci. USA92, 4547-4551.
36.Taanman, J. W. and Capaldi, R. A. (1992). Purification of yeast cytochrome c oxidase with a subunit composition resembling the mammalian enzyme. J Biol Chem267, 22481-22485.
37.Cavdar Koc, E., Burkhart, W., Blackburn, K., Moseley, A. and Spremulli, L. L. (2001). The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J. Biol. Chem.276, 19363-19374.
38.Takeda, M., Chen, W. J., Saltzgaber, J. and Douglas, M. G. (1986). Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATP1 coding the F1-ATPase alpha-subunit and its assembly. J. Biol. Chem.261, 15126-15133.
39.Hell, K., Herrmann, J. M., Pratje, E., Neupert, W. and Stuart, R. A. (1998). Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl. Acad. Sci. USA95, 2250-2255.
40.Arnold, S., Lee, I., Kim, M., Song, E., Linder, D., Lottspeich, F. and Kadenbach, B. (1997). The subunit structure of cytochrome-c oxidase from tuna heart and liver. Eur. J. Biochem.248, 99-103.
41.Lauble, H., Kennedy, M., Beinert, H. and Stout, C. (1992). Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry31, 2735-2748.
42.Coleman, D., Rao, G., Goldsmith, E., Cook, P. and Harris, B. (2002). Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 A resolution. Biochemistry41, 6928-6938.
43.Weaver, T., Lees, M., Zaitsev, V., Zaitseva, I., Duke, E., Lindley, P., McSweeny, S., Svensson, A., Keruchenko, J., Keruchenko, I., Gladilin, K. and Banaszak, L. (1998). Crystal structures of native and recombinant yeast fumarase. J. Mol. Biol.280, 431-442.
44.Russell, R., Ferguson, J., Hough, D., Danson, M. and Taylor, G. (1997). The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution. Biochemistry36, 9983-9994.