Syllabus for Modeling of Optoelectronic Devices

EEE598, Fall, 2010

Instructor: Dragica Vasileska

Prerequisites: knowledge of solid state theory, some quantum mechanics background, and knowledge of pn-diodes

Text: lecture notes will be provided for each topic by the instructor

Topics Covered:

1.  Basic Quantum Mechanics

a.  Postulates of Quantum Mechanics

b.  Bound States

c.  Propagating States

i.  Single barrier

ii.  Double Barrier Case

iii. Transfer Matrix Approach for the transmission coefficient calculation

iv.  Tsu-Esaki formula for the current calculation

v. Quantum wells and Heterostructure materials

Assignment 1. Bound states calculation lab

Assignment 2. Piecewise-constant potential barrier tool

2.  Optical gaps and electronic structure calculations

a.  Semi-empirical methods

i.  Empirical Pseudopotential Method

ii.  k.p method

iii. Tight-binding approach

b.  Ab-initio calculations

Assignment 3: Implementation of the k.p and tight-binding method

3.  Solar Cells:

a.  Introduction to Solar Cells

i.  Renewable energy and Photovoltaics

ii.  What is a solar cell and solar cell modules?

b.  Absorbing Solar Energy

i.  Air Mass and the Solar Spectrum

ii.  Optical Properties of Solar Cell Materials

1.  Absorptivity, absorption coefficient, solar cell band gap

2.  Antireflection coatings

3.  Thickness determination

4.  Predicting Absorptivity

iii. Photoluminescence

c.  Solar Cell Equations

i.  PV device characteristics

ii.  Quantum efficiency for current collection

iii. Lifetime, the diffusion length, optical absorption

iv.  The transport equations and current extraction

v. Photon recycling

vi.  Simulation of Solar Cells with Silvaco and Crosslight

d.  Concentrators of Light

i.  The thermodynamic limit of light concentrators

ii.  Geometrical optics and ray tracing implementation in Silvaco

Assignment 4: Development of a 1D Solar Cell Simulator

Assignment 5: Silvaco simulation of 2D solar cells with ray tracing included

4.  Photodetectors

a.  Detector Figures of Merit

i.  Responsivity

ii.  Noise equivalent power

iii. Detectivity

b.  Thermal Generation-recombination processes

i.  Shockley-Read processes

ii.  Internal radiative processes

iii. Auger process

c.  Auger-dominated performance

i.  Equilibrium devices

ii.  Non-equilibrium devices

Assignment 6: Development of 1D Simulator for Photodetectors

5.  Light emitting diodes

a.  Radiative and non-radiative recombination

i.  Radiative electron hole recombination

ii.  Radiative recomboination for low-level excitation

iii. Radiative recombination for high-level excitation

iv.  Bimolecular rate equations for quantum well structures

v. Luminescence decay

vi.  Non-radiative recombination in the bulk

vii.  Non-radiative recombination at surfaces

viii.  Competition between radiative and non-radiative recombination

b.  Theory of radiative recombination

i.  Quantum-mechanical model of recombination

ii.  The van Roosbroeck-Shockley model

iii. Temperature and doping dependence of recombination

iv.  The Einstein model

c.  LED basics: Electrical properties

i.  Diode current voltage characteristics

ii.  Deviation from ideal IV-characteristics

iii. Evaluation of diode parasitic resistances

iv.  Emission energy

v. Carrier distribution in pn-homojunctions

vi.  Carrier distribution in pn-heterojunctions

vii.  Effect of heterojunctions on device resistance

viii.  Carrier loss in double heterostructures

ix.  Carrier overflow in double heterostructures

x. Electron blocking layer

xi.  Diode voltage

d.  LED Basics: Optical Properties

i.  Internal, extraction, external and power efficiencies

ii.  Emission spectrum

Assignment 7: Simulation of LEDs using Silvaco and Crosslight

6.  Lasers

a.  Basic Laser Physics

i.  Stimulated transition: The classical oscillator model

ii.  Electric Dipole transitions in real atoms

iii. Atomic rate equations

iv.  The Rabi frequency

v. Laser pumping and population inversion

vi.  Laser amplification

vii.  Linear pulse propagation

viii.  Nonlinear optical pulse propagation

ix.  Laser mirrors and regenerative feedback

x. Fundamentals of Laser oscillations

b.  Optical Beam Resonators

i.  Optical waveguide modeling

c.  Laser dynamics

i.  Laser cavity equations

ii.  Laser spiking and mode competition

iii. Laser Q-switching

iv.  Active laser mode coupling

v. Passive mode locking

d.  VCSELs

Assignment 8: Simulation of VCSELS using Silvaco and Crosslight