SupplementaryMaterial:TheSocialPerceptualSalience Effect 1
Runninghead: SUPPLEMENTARYMATERIAL:THESOCIALPERCEPTUAL SALIENCEEFFECT
SupplementaryMaterial:TheSocialPerceptualSalience Effect
MartinP.Inderbitzin1,AlbertoBetella1,AntonioLanatà2,EnzoP.Scilingo2,UlyssesBernardet1,PaulF.M.J.Verschure1,3
1 Laboratory forSynthetic, PerceptiveandEmotiveSystems,TechnologyDepartment, Universitat PompeuFabra, Barcelona,Spain.
2 InterdepartmentalResearchCenter E.Piaggio, FacultyofEngineering,Universityof
Pisa, Italy.
3 CatalanInstituteforResearchandAdvancedStudies(ICREA),Barcelona,Spain.
March7,2012
AuthorNote
Correspondenceconcerningthispapershould beaddressed to:
PaulF.M.J.Verschure,Synthetic, Perceptive,Emotive,CognitiveSystemsGroup
Universitat PompeuFabra, RocBoronat 138,08018 Barcelona,Spain. E-mail:,Phone:(0034)935421372
SupplementaryMaterial:TheSocialPerceptualSalience Effect 2
SupplementaryMaterial:TheSocialPerceptualSalienceEffect
PreprocessingofPhysiologicalData
Therawdata wascollected frombiosensors andpre-processed.Each signalwas segmentedaccordingtothetimedurationofthestimulatingepochs.Themethodsfordataanalysis ofthephysiological signals arebasedonpreviouslypublished algorithms. Detaileddescriptionscanbefoundin(Valenza, Lanata,Scilingo,2011).
HeartRate Variability(HRV)
Electrocardiogram(ECG)waspre-filtered through aMovingAverage Filter(MAF)inordertoextract andsubtractthebaseline.Since HRVrefers tothechangeovertimeof
theHeartRate (HR).Weadaptedanautomaticalgorithmtodetect theQ-,R-andS-wave formsoftheECGsignal(QRScomplex)(PanTompkins, 1985).
ThetimeintervalbetweentwosuccessiveQRScomplexesisdefined astheR-wave
toR-wave (RR)interval(tR−R).Thereaftertheheartrate(HR)isdefined as:
HR=
60
tR−R
(1)
BecausetheHRisatimeseriessequenceofnon-uniformRRintervals,were-sampledthesignalusingthealgorithmofBerger etal.(2007)
Respiration(RSP)
Weidentifiedthebaseline andremovedmovementartifacts. Additionallywefilteredthesignalusingatenthorderlow-passfiniteimpulse responsefilter(FIR)withacut-offfrequencyof1HzapproximatedbyButterworthpolynomial.
SupplementaryMaterial:TheSocialPerceptualSalience Effect 3
ElectrodermalResponse (EDR)
TheEDRsignalwasfilteredusinga2.5Hzlow-passFIRfilter.Becauseithas beenshownthattheenergy ofthetoniccomponentisinthefrequencyband from0to0.05Hzandtheenergyofthephasiccomponentintheband from0.05to1-2Hz(IshchenkoShev’ev,1989),weappliedatwelveleveldecompositionwavelet filterinordertoidentifytwomainresponsecomponentsinthesebands.Approximationatlevel1ofthefilterwasthetoniccomponentandsubsequentdetailswerethephasiccomponent.
StandardFeatureSetIdentification
Wecalculatedallthefeaturesforeachneutral aswellasforeachstimulationsession.Weused43standard featuresand8featuresextractedusingnon-linear dynamicmethods whicharedescribedinthenextsection.Thestandard featuresetwasderived fromthefollowingcomponents ofthesignal: timeseries, statistics,frequencydomain andgeometricanalysis.
HeartRateVariability(HRV)HRVfeaturesweredecomposedinfeaturesdescribing boththetimeandfrequencydomain. Definingthebeat-to-beat timewindow(NN),wecalculatedthemeanoftheNN(MNN)andthestandard deviationoftheNN(SDNN).Additionallytherootmeansquareofsuccessivedifferencesofintervals (RMSSD)andthenumberofsuccessivedifferencesofintervalswhichdifferbymorethan50ms(pNN50%)wascalculated.
Thetriangular index,thatrefers tothemorphological changesoftheHRV,wasderivedfromthehistogram ofRRintervals byperformingatriangular interpolation overtheNNwindows(TINN).
Webasedallfeaturesextractedinthefrequencydomain onthePower Spectral
Density(PSD)oftheHRV.Three mainspectralcomponentsweredistinguishedina
SupplementaryMaterial:TheSocialPerceptualSalience Effect 4
spectrumcalculatedfromshort-term recordings:VeryLowFrequency(VLF),LowFrequency(LF),andHighFrequency(HF)components.WeadditionallycalculatedtheLF/HFRatiowhichshouldgiveinformationabout theSympatho-Vagalbalance(Camm etal.,1996).
Respiration(RSP)BydefiningatimewindowWtherespiration rate(RSPR) was calculatedasthefrequencycorrespondingtothemaximumspectralmagnitude.We identifiedthemaximum(MAXRSP)andtheminimum(MINRSP)valueofbreathingamplitudeandtheirdifference(DMMRSP)tocharacterizethedifferencesbetweeninspiratoryandexpiratoryphase(range orgreatestbreath).
ElectrodermalResponse(EDR) Weapplied thesamestandardmethodsasusedforthe
RSP signalprocessing toidentifyboththetonicandthephasic EDRthecentralfrequency,meanandstandard deviationoftheamplitude. Additionallywecalculatedthemaximumpeak andtherelativelatency fromthebeginning oftheinteraction phase,frequency(rate)andmagnitude(max)ofthemaximumcomponentofthephasicEDR.
Non-LinearDynamicMethods forFeatureExtraction
Thehere documented non-linear dynamic methods forfeatureextraction arebasedonthestudyofValenza etal.(2011).
Webasedouranalysis ontheso-calledembeddingprocedure.Embeddingofatimeseriesxt=(x1,x2,..., xN)isrealized bycreating asetofvectorsXi such that
Xi=[xi,xi+4,xi+24,..., xi+(m−1)4](2)
where4isthedelayinnumberofsamplesandmisthenumberofsamplesofthearray
Xi.InorderthatthevectorXi representsthevaluesthatrevealthetopological
SupplementaryMaterial:TheSocialPerceptualSalience Effect 5
relationshipbetweensubsequent pointsinthetimeseries, wemustdefinethedimensionofmandXi andthedelay∆.Wecanrepresentthetemporal evolutionofthesystem byprojecting thevectorsXi ontoatrajectorythrough amultidimensionalspace,oftenreferred toasphasespaceorstatespace.TheRecurrence Plot(RP)visualizesalltimesatwhichastateofthedynamicalsystem recurs (Marwan,CarmenRomano, Thiel,Kurths,2007). Higherdimensionalphasespacescanbevisualized byprojecting themintotwoorthree dimensionalsub-spaces(Eckmann,Kamphorst,Ruelle, 1987). When
astateattimeirecurs alsoattimej,theelement (i,j)ofasquaredmatrixNxN issetto
1,0otherwise.Thisrepresentation iscalledrecurrence plot(RP).Wecanmathematically
expresssuch anRPas
Ri,j=Θ(i−||xi−xj||)
wherexi Rm,i,j=1,....,N;Nisthenumberofconsideredstatesxi,εiisathreshold distance,||.||anormandΘ(.)theHeaviside functionwhichisdefined as:
1,ifz≥0
H(z)=
0,ifz0
(3)
Wechosetheoptimalvalueofεi(Schinkel, Dimigen,Marwan,2008)asfollowing:
i=0.1∗APD(4)
whereAPD isaveragedphasespacediameterofdata xi.
Toquantifythenumberanddurationofrecurrences ofadynamical systempresentedbyitsstatespacetrajectorytheRecurrence Quantification Analysis(RQA)canbeapplied (Zbilut &WebberJr,2006). Inthisstudywecalculatedthefollowingfeatures:
RecurrenceRate (RR)isthepercentageofrecurrence pointsinanRPandit corresponds tothecorrelationsum:
RR=
N
XRi,j
N2
i,j=1
(5)
SupplementaryMaterial:TheSocialPerceptualSalience Effect 6
whereNisthenumberofpointsonthephasespacetrajectory.
Thedeterminism(DET)isdefined asthepercentageofrecurrence pointswhichformdiagonal lines:
DET =
N
PlP(l)
l=lmin
N
PRi,j
i,j=1
(6)
whereP(l)isthehistogram ofthelengths lofthediagonal lines.
Laminarity(LAM)isthepercentageofrecurrence pointswhichformverticallines:
LAM=
N
PυP(υ)
υ=υmin
N
PυP(υ)
υ=1
(7)
whereP(υ)isthehistogram ofthelengths υofthediagonal lines.
Trapping TimeTTistheaveragelengthoftheverticallines:
TT=
N
PυP(υ)
υ=υmin
N
PP(υ)
υ=υmin
(8)
Ratio(RATIO)istheratiobetweenDET andRR:
RATIO=
DET
RR
(9)
Averaged diagonal linelength(L)istheaveragelengthofthediagonal lines:
N
PlP(l)
L= l=lmin
PP(l)
l=lmin
(10)
Entropy(ENTR)istheShannon entropyoftheprobabilitydistributionofthe
diagonal linelengths p(l):
N
ENTR=−Xp(l)lnp(l)(11)
l=lmin
SupplementaryMaterial:TheSocialPerceptualSalience Effect 7
Longest diagonal line(Lmax) Thelengthofthelongest diagonal line:
Lmax=max({li;i=1,..., Nl})(12)
whereNl isthenumberofdiagonal linesintherecurrenceplot.
Ithas beenshownthatApproximate Entropy (ApEn)canbeusedtomeasurethe complexityorirregularityofthesignal(Fusheng, Bo,Qingyu,2000;Richman Moorman,2000). SmallvaluesofApEnindicate amoreregular signal,lagervaluesahighirregularone.
TocomputetheApENfirstasetoflengthmvectorsuj isformed:
uj=(RRj,RRj+1,..., RRj+m−1),(13)
wherej=1,2,..., N−m+1,mistheembeddingdimension,andNisthenumberof measuredRRintervals. Themaximumabsolutedifferencebetweenthecorresponding elementsdefines thedistancebetweenthesevectors:
d(uj,uk)=max
n=0,...,m−1
{|RRj+n−RRk+n|}(14)
Foreachuj therelativenumberofvectorsuk forwhichd(uj,uk)≤riscalculated.r
isthetolerancevalue. Theindexisdenoted withCm(r)andcanbewrittenintheform:
j (r)=
nbrof{uk|d(uj,uk)≤r}
N−m+1∀k
(15)
Duetothenormalization,thevalueofCm(r)issmaller orequal to1.ThevalueofCm(r)
jj
isatleast 1/(N−m+1)since uj isalsoincluded inthecount. Theaveragednatural
logarithmofeachCm(r)yieldsto:
Φm(r)=1
N−m+1
N−m+1
X
j=1
lnCm(r).(16)
Theapproximateentropyfinallycanbecalculatedas:
ApEn(m,r,N)=Φm(r)−Φm+1(r)(17)
SupplementaryMaterial:TheSocialPerceptualSalience Effect 8
Three parametersareinfluencingthevalueofApEn:thelengthmofthevectorsuj,thetolerancer,andthedata lengthN.Inthisworkwehavechosenm=2.ThelengthNofthedata alsoaffectsApEn.AsNincreasestheApEnapproachesitsasymptoticvalue.Thetolerancerhas astrongeffectonApEnandshould beselectedasafractionoftheStandard DeviationofallNormal-to-Normal (SDNN)intervals,i.e.thestandard deviationoftheintervals betweensuccessivenormalQRScomplexes.Acommon selectionforrisr=0.2·SDNN,whichisalsousedhere.
Featurereductionstrategy
Weobtainedahigh-dimensionalfeaturespace,thatwereduced byapplyingthePrincipalComponentAnalysis(PCA)method (Jolliffe,2002). Weimplementedthisapproach bymeansoftheSingular ValueDecomposition(SVD).Each trainingsetvectorcanbeapproximatedbytakingonlythefirstfewk,where,k≤r,PrincipalComponents.Thismathematicalmethod isbasedonthe lineartransformationofthedifferentvariablesinprincipalcomponents whichcouldbeassembledinclusters.
Classification
ForclassificationaNearest MeanClassifier (NMC))isused.Thisclassifier usesthe similaritybetweenpatternstodecide onagoodclassification.Thequestionishowtodefinesimilarity.NMCdefines thefeaturesofaclassasavectorandrepresentstheclasswiththemeanoftheelementsofthisvector. Thus,anyunlabeledvectoroffeatureswillbeclassifiedastheclasswiththenearestmeanvalue. Templatematching usesatemplatefordefiningclasslabels, andtriestofindthemostsimilartemplateforclassification.
Theclassificationtaskwasevaluatedusingtheconfusion matrix.Thegeneric element rij oftheconfusion matrixindicateshowfrequently apattern belonging tothestimulusclassiwasclassifiedasbelonging totheresponseclassj.Thematrixhas toberead bycolumns. Weused80%ofthefeaturedatasetfortrainingandtheremaining 20%
SupplementaryMaterial:TheSocialPerceptualSalience Effect 9
forthetesting phase.Inordertoobtainunbiasedclassificationresults, weperformed
40-foldcross-validationsteps.Thisprocedure allowedustoconsiderthedistributionoftheclassificationresults asGaussian.Theclassificationisdescribedbythemeanandstandarddeviations among the40confusion matrices(SeeTable1).
SupplementaryMaterial:TheSocialPerceptualSalience Effect 10
Questionnaire
Wewouldliketoevaluateinmoredetailhowyouperceivedtheinteraction withtherealperson ortheavataratDIFFERENTdistances.’Veryclose’wastheinteraction distance of0.5meter. ’Close’thedistance of1.2meters.Pleasemarkwithacrossyourpersonal experience.Thanks.
VirtualInteraction
Iperceivedthecloseinteraction withtheVIRTUALavataras:
Pleasant 1 2 3 4 5 6 7 Unpleasant
Negative 1 2 3 4 5 6 7 Positive
Iperceivedtheverycloseinteraction withtheVIRTUALavataras: Pleasant 1 2 3 4 5 6 7 Unpleasant
Negative 1 2 3 4 5 6 7 Positive
Physical Interaction
Iperceivedthecloseinteraction withthePHYSICALperson as:
Pleasant 1 2 3 4 5 6 7 Unpleasant
Negative 1 2 3 4 5 6 7 Positive
Iperceivedtheverycloseinteraction withthePHYSICALperson as: Pleasant 1 2 3 4 5 6 7 Unpleasant
Negative 1 2 3 4 5 6 7 Positive
SupplementaryMaterial:TheSocialPerceptualSalience Effect 11
References
Berger, R.,Akselrod,S.,Gordon, D.,Cohen, R.(2007). Anefficientalgorithmforspectralanalysis ofheartratevariability.Biomedical Engineering,IEEETransactionson(9),900–904.
Camm, A.,Malik,M.,Bigger,J.,Breithardt, G.,Cerutti,S.,Cohen, R.,etal.(1996). Heartratevariability:standardsofmeasurement, physiological interpretation,andclinicaluse. Circulation,93(5),1043–1065.
Eckmann,J.,Kamphorst,S.,Ruelle,D.(1987). Recurrenceplotsofdynamical systems.
EPL(EurophysicsLetters), 4,973.
Fusheng,Y.,Bo,H.,Qingyu,T.(2000). Approximate Entropyanditsapplication in biosignalanalysis.Nonlinear biomedical signalprocessing,72.
Ishchenko,A.,Shev’ev,P. (1989). Automatedcomplexformultiparameteranalysisofthegalvanicskinresponsesignal. Biomedical Engineering,23(3),113–117.
Jolliffe,I.(2002). Principalcomponentanalysis.WileyOnlineLibrary.
Marwan,N.,CarmenRomano, M.,Thiel,M.,Kurths,J.(2007). Recurrence plotsfortheanalysisofcomplexsystems.Physics Reports, 438(5-6),237–329.
Pan, J.,Tompkins, W.(1985). Areal-time QRSdetectionalgorithm. IEEETransactionsonBiomedical Engineering,230–236.
Richman,J.,Moorman, J.(2000). Physiological time-seriesanalysisusingapproximateentropyandsampleentropy. American Journal ofPhysiology-HeartandCirculatoryPhysiology,278(6),H2039.
Schinkel,S.,Dimigen,O.,Marwan,N.(2008). Selectionofrecurrencethresholdforsignaldetection.TheEuropean PhysicalJournal-SpecialTopics,164(1),45–53.
Valenza,G.,Lanata, A.,Scilingo,E.P. (2011). TheRoleofNonlinear Dynamics in AffectiveValence andArousalRecognition.IEEETransactiononAffectiveComputing,1–14.
SupplementaryMaterial:TheSocialPerceptualSalience Effect 12
Zbilut,J.,WebberJr,C.(2006). Recurrence quantification analysis.WileyOnline
Library.
SupplementaryMaterial:TheSocialPerceptualSalience Effect 13
Table1
NMCclassifier -Physiological signal classificationbasedona20componentfeatureset.Therowsare "responseclass" whilethecolumnsare "stimulusclass". Thetablemust bereadcolumn-wise.
NMC / Physical Intimate / VirtualIntimatePhysical Intimate / 88.23(21.5) / 23.53(25.3)
VirtualIntimate / 11.76(21.5) / 76.47(25.3)
Physical Neutral / Physical Intimate
Physical Neutral / 98.75(7.9) / 0.0(0.0)
Physical Intimate / 1.25(7.9) / 100.0(0.0)
VirtualNeutral / VirtualIntimate
VirtualNeutral / 79.15(25.0) / 12.50(21.9)
VirtualIntimate / 20.84(25.0) / 87.50(21.9)
VirtualNeutral / Physical Neutral
VirtualNeutral / 60.00(35.7) / 48.33(33.4)
Physical Neutral / 40.00(35.7) / 51.66(33.4)