SUPPLEMENT Tan et al. 2015

TABLE S1. Examples of bacterial glycans, acceptor proteins and transferase enzymes. Glycans are represented schematically in Figure 2.

Gram / Enzyme / Activity / Acceptor site / Acceptor protein(s) / Glycan(s) / Ref.
O-linked glycosylation
Pilus subunits – (A)
Neisseria meningitidis / -ve / PglL / OST / S/T (LCR) / Pilin (PilE), AniA / adiNAcBac, GATDH / [1]
Neisseria gonorrhoeae / -ve / PglO / OST / S / Pilin (PilE) / diNAcBac / [2]
Pseudomonas aeruginosa / -ve / PilO / OST / S/T / pilin (PilA) / α,5NβOHC47NFmPse2,4βXyl1,3βFucNAc / [3, 4]
Pseudomonas aeruginosa / -ve / TpfW / OST / S/T / pilin (PilA) / α1,5-linked D-Araf / [5, 6]
Francisella tularensis / -ve / PglA / OST / S / Pilin (PilA) + others / bX-P-HexNAc-HexNAc-Hex-Hex-HexNAc / [7]
Flagellin subunits – (B)
Campylobacter jejuni / -ve / ND / ND / S/T / flagellin / aPse5Ac7Ac and related derivatives / [8]
Listeria monocytogenes / +ve / GmaR / GT / T / flagellin / β-GlcNAc / [9] [10]
Helicobacter pylori / -ve / ND / ND / S/T / flagellin (FlaA, FlaB) / Pse5Ac7Ac / [11]
Clostridium difficile / +ve / ND / ND / S/T / flagellin (FliC) / HexNAc residue, to which a methylated aspartic acid is linked via a phosphate bond.c / [12]
Campylobacter coli / -ve / ND / ND / S/T / flagellin / Pse5Ac7Ac, Leg derivatives / [13]
Clostridium botulinum / +ve / ND / ND / S / flagellin / αLeg5GluNMe7Ac / [14]
Aeromonas hydrophilia / -ve / ND / ND / T / polar flagellin FlaA/B / Pse5Ac7Ac derivative (376Da) -Hex-Hex-GalNAc-GalNAc-GalNAc-102Da (+/- P and Me groups on the GalNAc) / [15, 16]
Aeromonas hydrophilia / -ve / ND / ND / S / lateral flagellin LafA / Pse5Ac7Ac derivative (376Da) / [15]
Aeromonas caviae / -ve / Maf1 / GT / S/T / flagellin / Pse5Ac7Ac / [17]
Other proteins – (C)
Burkholderia cenocepacia / -ve / PglL(Bc) / OST / LCR rich in S, A, P / >23 proteins / HexNAc-HexNAc-Hex / [18]
Acinetobacter baumannii / -ve / PglL / OST / S/T / membrane proteins / GlcNAc3NAcA4OAc4(βGlcNAc-6-)αGal6βGlc3βGalNAc / [19]
Camplyobacter jejuni / -ve / ND / ND / T / MOMP / Galβ1,3GalNAcβ1,4GalNAcβ1,4GalNAcα1 / [20]
Mycoplasmas / ND / ND / S/T / proteins / Hex / [21]
Escherichia coli / -ve / Aah / GT / S/T / AIDA-I, Ag43, TibA / Hep / [22]
Escherichia coli / -ve / TibC / GT / regions rich in S/T / TibA, Ag43 / Hep / [23]
Bacteroides fragilis / -ve / ND / OST / (D)(S/T)
(A/I/L/V/M/T) / ~20 proteins / 3 Hex, 2 HexUA, 2 HexNAc, 2 dHex / [24]
N-linked Glycosylation- (D)
Campylobacter jejuni / -ve / PglB / OST / (D/E)-X-N-Y-(S/T) / >65 proteins / GalNAc3(Glc)GalNAc2diNAcBac / [25]
Helicobacter pullorum / -ve / PglB1 / OST / N (ND) / ND / Pentasaccharide (HexNAc-217-217-216-HexNAc) / [26]
Haemophilus influenzae / -ve / HMW1c / GT / N-X-(S/T) / HMW1 / Glc and Gal / [27]
S-linked Glycosylation- (E)
Lactobacillus plantarum / +ve / GccA / GT / C / Glycocin F / GlcNAc / [28]
Bacillus subtilis / +ve / SunS / GT / C / Sublancin / Glu / [29]

FOOTNOTES

a: glycans known to vary through phase variation of glycosytransferases

b: X denotes an unknown phospho containing monosaccharide

c: other strains of C. difficile can modify flagellin with heterogeneous glycans containing up to five monosaccharide residues with masses of 204 Da (HexNAc), 146 Da (deoxyhexose), 160 Da (methylated deoxyhexose), and 192 Da (heptose).

ABBREVIATIONS

α-5NβOHC47NFmPse: 5-N-b-hydroxybutyryl-7-Nformyl-pseudaminic acid

αLeg5GluNme7Ac: 7-acetamido-5(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-d-glycero-α-d-galacto-nonulosonic acid

β-GlcNAc3NAcA4OAc: 4-O-acetylated derivative of 2,3-diacetamido-2,3-dideoxy-glucuronic acid

Bacillosamine: 2,4-Diamino-2,4,6-trideoxy-d-glucose

diNAcBac: 2,4-diacetamido bacillosamine

D-Araf: D-arabinofuranose (furanose form of arabinose)

FucNAc: N-acetylfucosamine

Gal: galactose

GalNAc: N-acetylgalactosamine

GATDH: 2-glyceramido 4-acetamido 2,4,6-trideoxyhexose

Glc: glucose

GlcNAc: N-acetylglucosamine

GT: glycosyltransferase

Hep: heptose

Hex: hexose

HexNAc: N-acetylhexosamine

HexUA: hexuronic acid

LCR: Low complexity region

Leg: Legionaminic acid (5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-nonulosonic acid)

MethHexUA: the methyl ester of hexuronic acid

Man: mannose

ManNAc: N-acetylmannosamine

Me: methyl group

ND: not determined

OST: Oligosaccharyltransferase

P: phosphate

Pse5Ac7Ac: pseudaminic acid (5,7-diacetamido-3,5,7,9-tetradeoxy-l -glycero- l -manno-nonulosonic acid)

Pse5Am7Ac: 5-acetamidino-7-acetamido-Pse

Xyl: xylose

REFERENCES

1 Stimson, E., et al. (1995) Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Molecular microbiology 17, 1201-1214

2 Aas, F.E., et al. (2007) Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Molecular microbiology 65, 607-624

3 Castric, P. (1995) pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141, 1247-1254

4 Castric, P., et al. (2001) Structural Characterization of the Pseudomonas aeruginosa 1244 Pilin Glycan. Journal of Biological Chemistry 276, 26479-26485

5 Harvey, H., et al. (2011) Pseudomonas aeruginosa d-Arabinofuranose Biosynthetic Pathway and Its Role in Type IV Pilus Assembly. Journal of Biological Chemistry 286, 28128-28137

6 Kus, J.V., et al. (2008) Modification of Pseudomonas aeruginosa Pa5196 Type IV Pilins at Multiple Sites with d-Araf by a Novel GT-C Family Arabinosyltransferase, TfpW. Journal of Bacteriology 190, 7464-7478

7 Egge-Jacobsen, W., et al. (2011) O-Linked Glycosylation of the PilA Pilin Protein of Francisella tularensis: Identification of the Endogenous Protein-Targeting Oligosaccharyltransferase and Characterization of the Native Oligosaccharide. Journal of Bacteriology 193, 5487-5497

8 Thibault, P., et al. (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. The Journal of biological chemistry 276, 34862-34870

9 Schirm, M., et al. (2004) Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J Bacteriol 186, 6721-6727

10 Shen, A., et al. (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes & development 20, 3283-3295

11 Schirm, M., et al. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Molecular microbiology 48, 1579-1592

12 Twine, S.M., et al. (2009) Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 191, 7050-7062

13 McNally, D.J., et al. (2007) Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. The Journal of biological chemistry 282, 14463-14475

14 Twine, S.M., et al. (2008) Flagellar glycosylation in Clostridium botulinum. The FEBS journal 275, 4428-4444

15 Wilhelms, M., et al. (2012) Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. The Journal of biological chemistry 287, 27851-27862

16 Merino, S., et al. (2014) Aeromonas hydrophila Flagella Glycosylation: Involvement of a Lipid Carrier. PloS one 9, e89630

17 Parker, J.L., et al. (2012) Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N. MicrobiologyOpen 1, 149-160

18 Lithgow, K.V., et al. (2014) A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 92, 116-137

19 Iwashkiw, J.A., et al. (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS pathogens 8, e1002758

20 Mahdavi, J., et al. (2014) A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open biology 4, 130202

21 Jordan, D.S., et al. (2013) O-linked protein glycosylation in mycoplasma. Mol Microbiol 90, 1046-1053

22 Benz, I. and Schmidt, M.A. (2001) Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40, 1403-1413

23 Sherlock, O., et al. (2006) Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol 188, 1798-1807

24 Posch, G., et al. (2013) "Cross-glycosylation" of proteins in Bacteroidales species. Glycobiology 23, 568-577

25 Nothaft, H., et al. (2012) Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Molecular & cellular proteomics : MCP 11, 1203-1219

26 Jervis, A.J., et al. (2010) Characterization of N-linked protein glycosylation in Helicobacter pullorum. J Bacteriol 192, 5228-5236

27 Gross, J., et al. (2008) The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. The Journal of biological chemistry 283, 26010-26015

28 Stepper, J., et al. (2011) Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS letters 585, 645-650

29 Wang, H. and van der Donk, W.A. (2011) Substrate selectivity of the sublancin S-glycosyltransferase. Journal of the American Chemical Society 133, 16394-16397