###May 13, 2014
###AR Hughes
### Stats for crab responses to predator vocalizations
install.packages(bbmle, dependencies=TRUE)
install.packages(lme4, dependencies=TRUE)
install.packages(lattice, dependencies=TRUE)
install.packages(multcomp, dependencies=TRUE)
install.packages(glmmADMB, dependencies=TRUE)
library(bbmle)
library(lme4)
library(lattice)
library(multcomp)
library(glmmADMB)
##########################
###Predator acoustic cue experiment###
##########################
###All days of experiment: Exposure day as random factor nested in Tank as random factor; week as random factor; Binomial distribution
acoustic = read.csv("acoustic_cue.csv", header=T) #read in file
names(acoustic)
acoustic$week=as.factor(acoustic$week) #convert to factor
acoustic$Tank=as.factor(acoustic$Tank)
acoustic$expos.day=as.factor(acoustic$expos.day)
model1 = glmmadmb(cbind(no..consumed, Total.clams.left)~1+(1|week)+(1|Tank/expos.day),family='binomial', data=acoustic)
model2 = glmmadmb(cbind(no..consumed, Total.clams.left)~Treatment+(1|week)+(1|Tank/expos.day),family='binomial', data=acoustic)
AICctab(logLik(model1),logLik(model2),delta=TRUE, weights=TRUE)
tukey=glht(model2, linfct=mcp(Treatment="Tukey")) #Tukey tests
summary.tukey = summary(tukey)
summary(tukey, test=adjusted("Westfall")) #Westfall adjustment of p-values for multiple comparisons
###Day 1 of experiment: Tank as random factor; week as random factor; Binomial distribution
acoustic_day1 = read.csv("acoustic_cue_day1only.csv", header=T) #read in file
names(acoustic_day1)
model1 = glmer(cbind(no..consumed, Total.clams.left)~1+(1|week)+(1|Tank), family=binomial, data=acoustic_day1)
model2 = glmer(cbind(no..consumed, Total.clams.left)~Treatment+(1|week)+(1|Tank), family=binomial, data=acoustic_day1)
AICctab(logLik(model1),logLik(model2),delta=TRUE, weights=TRUE)
##########################
###Predator acoustic cue vs. chemical cue experiment###
##########################
###Trial as random factor; Tank as random factor; Binomial distribution
acoustic_chemical = read.csv("acoustic_chemical.csv", header=T) #read in file
names(acoustic_chemical)
acoustic_chemical$trial=as.factor(acoustic_chemical$trial) #convert to factor
acoustic_chemical$tank=as.factor(acoustic_chemical$tank)
model1 = glmmadmb(cbind(Clams.eaten, Total.clams.left)~1+(1|trial)+(1|tank), family='binomial', data=acoustic_chemical)
model2 = glmmadmb(cbind(Clams.eaten, Total.clams.left)~sound+(1|trial)+(1|tank), family='binomial', data=acoustic_chemical)
model3 = glmmadmb(cbind(Clams.eaten, Total.clams.left)~water+(1|trial)+(1|tank), family='binomial', data=acoustic_chemical)
model4 = glmmadmb(cbind(Clams.eaten, Total.clams.left)~sound+water+(1|trial)+(1|tank), family='binomial', data=acoustic_chemical)
model5 = glmmadmb(cbind(Clams.eaten, Total.clams.left)~sound*water+(1|trial)+(1|tank),family='binomial', data=acoustic_chemical)
AICctab(logLik(model1),logLik(model2),logLik(model3),logLik(model4),logLik(model5),delta=TRUE, weights=TRUE)
acoustic_chemical$Inter=interaction(acoustic_chemical$sound, acoustic_chemical$water) #create an interaction variable
tukey=glht(model5, linfct=mcp(Inter="Tukey")) #Tukey tests
summary.tukey = summary(tukey)
summary(tukey, test=adjusted("Westfall")) # Westfall adjustment of p-values for multiple comparisons