Solving Equations
Classwork
Solve the following equations. Show all work.
1. 3x – 4x + 6 = -2x + 7 2. 5m + 2m – 8 = 4m – 5
3. -6(n + 3) – 4 = -2(n – 3) – 44. 2(p + 4) – 8 = -2(p + 9) – 5
5. 5x – 3 – 2x – 8 = 3x – 4 + 26. 8y – 10 + 4 = 6y – 2y – 5
7. 4 – (x – 8) = 3 + 2x8. 3 – 2(m + 4) = 5 – 6m
9. 4p + 3(p + 1) = 2(2p – 6)10. 7(x – 9) – 20 = -6(x + 3)
Solving Equations
Homework
Solve the following equations. Show all work.
11. 2x – 8x – 4 + 3 = -5x + 412. 3(m – 9) + 2(m + 3) = -6
13. 4x + 5 – 8x + 10 = 2x – 1214. 4(x + 6) – 10 = 2(2x – 3)
15. 5p + 12 – 8 + 2p = 6(p + 4) – 216. 2(m + 3) – 4 = 5(m + 1) – 6
17. 6(k – 3) – (k – 4) = -(k + 6) – 118. 5(2n – 5) – 3 = 2(3n – 4) – 8
19. 4(x – 12) – 6x = 2x – 1020. 3y – 10 – 11y – 6 = -4y – 13
Spiral Review
21. Work out:22. Add:23. Multiply:24. Evaluate, use p = 4, q = 5:
10 × 24 ÷ 3 × 12 6 + (3p ÷ 4) + 2q
Equations with Fractions
Classwork
Solve the following equations. Show all work.
25. 26.
27. 28.
29. 30.
31. 32.
33. 34.
Equations with Fractions
Homework
Solve the following equations. Show all work.
35. 36.
37. 38.
39. 40.
41. 42.
43. 44.
Spiral Review
45. Subtract:46. Divide:47. Work out:48. Evaluate,use p = - 6, q = - 3
[(-17) – (8-1)] ÷ (-4) p(q ÷ 3 – p)
Formulas
Classwork
Solve the following formulas for the specified variable:
49. a2 + b2 = c2 for b250.
51. 52. 5p + 6n = -4p – 5 for p
53. 54.
55. 6x – 3y = 4xy + 2 for x56. 8mn – m = 5 for m
57. 58. 6k + 2 – m = 3k + 4 for k
Formulas
Homework
Solve the following formulas for the specified variable:
59. 3(k + 4) = 5m + 1 for k60.
61. 62.
63. 7mn – 8 = 8mk + 2 for m64.
65. 66. 10k + p = a + bp for p
67. 6abp – 2p = 7 for p68.
Spiral Review
69. Work out:70. Add:71. Multiply:72. Evaluate, use k = 6
[(-28) × 2) ÷ ((-8) – (-1)] 1 + 4(2 – 3k)
Solving Inequalities
Classwork
Solve the following Inequalities. Show all work.
73. 3x – 4 ≥ -2x + 674. 2m – 7< 5m – 9
75. 3(m – 4) ≤ -8(m + 2) – 476. –(3m – 1) – 5 > -2(m + 3)
77. -4(x + 6) – 9 > 2(x – 9)78. 4y – 3 – 6y ≤ 3y – 10 – 4
79. 8 – (p + 3) < -4(p – 6)80. 6 – 2k – 9 ≥ 3k – 2k – 1
81. 9b + 2 – 8b > 4b + 1282. 6(2m – 3) – 4 ≤ 6m – 4
Solving Inequalities
Homework
Solve the following Inequalities. Show all work.
83. 2x – 12 < 8x + 784. 3(x – 3) + 2 ≥ 4(x – 5)
85. -2(x – 8) > -4(x + 3)86. 5x – 3x + 7 ≤ x – 9 – 2
87. 7p + 3 – 5p ≥ 2p + 6 – 5p88. -3(m – 4) – (m – 3) < m + 1
89. -6m – 9 – 4 < 2m + 3 – 990. 5(k – 3) – 2(k + 4) ≥ 2k + 7
91. 3(2m – 5) + 7 ≤ 4(2m – 3) + 492. 10m – 7 – 3m – 5 > 6m – 3m + 2
Spiral Review
93. Workout:94. Add:95. Divide:96. Evaluate,use x = 5
(-26 + 8) ÷ (-6 + 4) -2(-6x – 9) + 4
Factoring out the GCF
Classwork
Factor out the GCF from the following:
97. 6a3b + 3ab298. 4am3 + 8am2 – 4am99. 3xy6 + 2xy4 – 6xy2
100. 6x3y2 – 3x2y 101. 10p3q – 15p3q2 – 5p2q2102. 8m4n3 + 12m4n2 – 2m3n3
103. -12a3b4 + 4a2b4 + 10ab4104. 7m3n3 – 7m3n2 + 14m3105. -6x3y2 + 3x3y + 6x3
106. 6m3n2 – 12m4n2
Factoring out the GCF
Homework
Factor out the GCF from the following:
107. 8x3y – 4x2y2108. 8m3n3 – 4m2n3 – 32mn3109. -18p3q2 + 3pq
110. -8xy – 16x + 8x2111. 2p6 + 3p4 + p112. 12m5n2 + 9m4n3 + 3m3n4
113. -6p4 + 9p3q – 3p3114. 2xy4 – 6x3y4 + 12x4y4115. –x3y + x2 + 3x
116. 12m3n – 2mn2 – 2mn 117. a8b + a6b2 + a3b4
Spiral Review
118. Multiply:119. Divide:120. Work out:121. Evaluate, use v = 2
(-9) – (-1) - 22 7(1 + 10v) – 8(-6v – 3)
Factoring x2 + bx + c
Classwork
Factor the following:
122. x2 – 5x – 24123. a2 – 5ab + 6b2 124. y2 + 10y + 25
125. m2 – mn – 6n2126. x2 – 2xy + y2127. a2 + ab – 12b2
128. p2 + 10p + 24129. x2 – 6xy + 8y2130. p2 – 13p + 30
131. a2 + 7ab + 12b2
Factoring x2 + bx + c
Homework
Factor the following:
132. m2 – 2m – 24133. a2 – 13a + 12134. n2 + n – 6
135. x2 – 10xy + 21y2136. x2 + 11xy + 18y2137. m2 – 4m – 5
138. a2 + 6ab – 16b2139. x2 – 12x + 20140. n2 + 7n + 12
141. a2 – 6ab – 27b2
Spiral Review
142. Work out:143. Multiply:144. Divide145. Evaluate, use x = 5:
5 – 4 [(-2) – (-2)] -2(-6x – 9) + 4
Factoring ax2 + bx + c
Classwork
146. 2x2 + 7x + 3147. 6x2 – x – 2148. 5a2 + 17a – 12
149. 6m2 - 5mn + n2150. 6p2 + 37p + 6151. 12b2 + bc – 6c2
152. 4m2 + 17m + 15153. 4c2 + 20cd + 25d2154. 12m2 – 20m + 3
155. 24m2 – 50mp + 25p2
Factoring ax2 + bx + c
Homework
156. 6x2 – 5x + 1157. 15p2 – 22p – 5 158. 10m2 + 13m – 3
159. 12x2 – 7xy + y2160. 4p2 + 24p + 35 161. 15m2 – 13mn + 2n2
162. 2p2 + 13p + 15163. 4x2 + 5xy + y2 164. 6p2 – 25p + 25
165. 20m2 – 9mn + n2
Spiral Review
166. Work out:167. Subtract:168. Evaluate,use k = 6
(52 – 1) × 4 + 33 – (4 + 8) 1 – 4(2 – 3k)+ 3k2 – 2k – 4
Factoring a2 – b2, a3 – b3, a3 + b3
Classwork
Factor the following:
169. a3 – 1170. 25x2 – 16y2171. 121a2 – 16b2
172. 27x3 + 8y3173. a3b3 – c3174. 4x2y2 – 1
175. 36m2 – 25n2176. 8m3 + n3177. a2 – 49
178. 4x2 + 25
Factoring a2 – b2, a3 – b3, a3 + b3
Homework
Factor the following:
179. y3 + 27180. 64m3 – 1181. p2 – 36q2
182. m2n2 – 4183. x2 + 16184. 8x3 – 27y3
185. p3 – q3r3186. 125m3 – 1187. 25x2 – 81
188. 100x2 – y2
Spiral Review
189. Work out:190. Simplify:191. Work out:192. Evaluate, use x = 1, z = 6
10 × [(-10) + 1] ÷ (-9) 3 – 5 [(-3) – (-1)] (-3) – (-6) - 52z ÷ 6 + x + x – 5
Factoring by Grouping
Classwork
Factor the following by grouping:
193. 2xy + 5x + 8y + 20 194. 9mn – 3m – 15n + 5
195. 2xy – 10x – 3y + 15196. 10rs – 25r + 6s – 15
197. 10pq – 2p – 5q + 1198. 10mn + 5m + 6n + 3
199. xy – x + zy – z200. 2km + 14k – 9m – 63
201. zx – zy + 4x – 4y202. 6x + 15 – 8xy – 20y
Factoring by Grouping
Homework
Factor the following by grouping:
203. 6mp – 2m – 15p + 5204. 6xy + 15x + 4y + 10
205. 4rs – 4r + 3s – 3206. 6tr – 9t – 2r + 3
207. 8mn + 4m + 6n + 3208. 3xy – 4x – 15y + 20
209. mn – m – n + 1210. 6qr + 15q – 8r – 20
211. 10mn – 15m – 6n + 9212. 9pq – 12p – 12q + 16
Spiral Review
213. Add:214. Subtract:215. Multiply:216. Divide:
Factoring Completely
Classwork
Factor each of the following as much as possible.
217. 3x3 – 12x2 + 36x218. 6m3 + 4m2 – 2m219. 3a3b – 48ab
220. 54x4 + 2xy3221. x4y + 12x3y + 20x2y222. -6m3n – 21m2n + 12mn
223. 4p2q2 – 12p2q – 16pq2 + 48pq224. -16x6 – 2x3y3225. -10m4n + 35m3n – 15m2n
226. 100p3 – 64pq2
Factoring Completely
Homework
Factor each of the following as much as possible.
227. 3m3 – 3mn2228. -6x3 – 28x2 + 10x229. 18a3b – 50ab
230. x4y + 27xy231. -12r3 – 21r2 – 9r232. 2x2y2 – 2x2y – 2xy2 + 2xy
233. 6m3n – 5m2n2 + mn2234. –p3q + pq3235. 60x2 + 230x + 200
236. -8m3n – 12m2n – 4mn
Spiral Review
237. Work out:238. Simplify:239. Add:240. Evaluate, use x = -3, y = 2
8(-4) (2)(-1) + (4)2 172 - (12 - 4)2 + 2 -3x + 2y – xy + x
Solving by Factoring
Classwork
Solve the following equations by factoring:
241. x3 – 16x = 0242. 2x2 + x – 3 = 0243. m3 + 11m2 + 30m = 0
244. 4r2 = -8r + 5245. x2 + 42 = 13x246. 12p2 + 9p = -3p3
247. 2r3 = 14r + 3r2248. 4y3 + 4y2 = 80y249. 5x = 3x3 + 14x2
250. m3 + 2m2= 3m
Solving by Factoring
Homework
Solve the following equations by factoring:
251. 2x3 – 20x2 + 48x = 0252. 3m3 + 36m2 + 96n = 0253. 2p3 = 128p
254. 6m3 + 5m2 = 4m255. 3k3 + 3k = 10k2256. 16p3 = 4p
257. 6r2 + 5 = 17r258. 2x2 + 24 = 19x259. 4x3 – 9x = 0
260. 6k3 = 21k2 + 90k
Spiral Review
261. Work out:262. Solve:263. Factor:264. Solve:
4 – 5(2 + 3(4))2x + 3x – 7 = x + 5 25x2 – 364(x – 5) – (3x + 3) > 4x + 2
Multiplying Powers of the Same Base
Classwork
Simplify the following:
265. (x2y5)(x4y)266. (-2m3n4)(4mn4)267. (7x2y)(-3x5y4)
268. (4pq)(3p3q5)269. (-3mnp)(-5mnp3)270. (10k4r3)(2kr6)
271. –(3x2yz4)(2x4z)(4x3y2z5)272. (3p2q6)(4p2q5)273. (-5r3s4)(3r5s2)
274. (2xy5)(-5xy3)
MultiplingPowers of the Same Base
Homework
Simplify the following:
275. (4x3y5)(-3x2y)276. (-m4n4)(6mn3)277. (12r3s5)(3r7s2)
278. (-5x2y6z3)(2xy9z2)279. (4r2s5)(5r2s8)280. -(m3n8p3)(m2np)
281. (4pqr)(3pq3r5)282. (-2mn3)(-4m3n2)283. (4x2y4)(7x2y)
284. (-6m3n9)(2m4n8)(-m3n2)285. (-4x4y5)(3xy4)
Spiral Review
286. Solve:287. Add:288. Solve:289. Evaluate, use x = -4, y = 3
2(x + 4) – 3(x – 3) <10 2m + 5 – 3m = 12 – 4m -3xy – 4y + 3x
Dividing Powers of the Same Base
Classwork
Simplify:
290. 291.292.
293. 294. 295.
296. 297. 298.
299. 300.
Dividing Powers of the Same Base
Homework
Simplify:
301. 302.303.
304. 305. 306.
307. 308. 309.
310.
Spiral Review
311. Solve:312. Multiply:313. Divide:314. Solve:
-3(m + 2) – 2 = -3m – 4 2(x + 3) – (4x – 3) ≤ -(x – 3)
Power to a Power
Classwork
Simplify the following:
315. (-5m3n3)3316. (2x4yz6)2317. (-3mn3p3)4
318. 319. 320. (3x4y7)2
321. 322. (-7k3mn3)2323.
324. (-2r2s6t)5
Power to a Power
Homework
Simplify the following:
325. 326. 327. (-3r2st6)4
328. (2x3y9z)3329. (-3km3n2)5330.
331. (-6m3n5)2332. 333. (-3x2yz5)3
334.
Spiral Review
335. Solve:336. Solve:337. Subtract:338. Evaluate,use m = 3, n = -4
-2(x + 5) – 3 = -3x 3m + 4 – 5m < - 2m + 3 5m – 2n + 3mn
Negative and Zero Exponents
Classwork
Write with positive exponents.
339. x-3y4z-6340. -4m-3n-6p0341. 342.
Write the following without a fraction.
343. 344. 345. 346.
Simplify where possible. Leave all answers with positive exponents.
347. 348. 349. 350.
Negative and Zero Exponents
Homework
Write with positive exponents.
351. 352. r3s-2t0353. 354. -9m-3n0p4
Write the following without a fraction.
3555. 356. 357. 358.
Simplify where possible. Leave all answers with positive exponents.
359. 360. 361. 362.
Spiral Review:
363. Add:364. Subtract:365. Solve:366. Multiply:
2(3x – 2) – 4 = 2x + 5 (3x + 2)(4x – 1)
Combinations
Classwork
Simplify. Leave answer with positive exponents.
367. 368. (-3a-3b-2)-4369. (2x3y-6)3
370. 371. 372. (3p-3q2r)3
373. (-2a-3b4)-2374. 375.
376. (3m-6n-3)-4
Combinations
Homework
Simplify. Leave answer with positive exponents.
377. (4x3y-4)-2378. 379. (-5x-12y7z-3)0
380. (5p3q-3m)2381. 382. (-3m0n0p-6)-2
383. 384. (-5m-3p3q)-3385.
386.
Spiral Review
387. Solve:388. Factor:389. Multiply:390. Factor:
4x – 7 – 7x > 2x – 9 x3 – 27y3 (2x + 5)(3x – 1) 16x2 – 1
Simplest Radical Form
Classwork
Put the following into Simplest Radical Form:
391. 392. 393. 394.
395. 396. 397. 398.
399. 400. 401. 402.
Simplest Radical Form
Homework
403. 404. 405. 406.
407. 408. 409. 410.
411. 412. 413. 414.
Spiral Review:
415. Work out:416. Multiply:417. Add:418. Solve:
3 – 4(5 + 6) – 3(2)(5) 6x - 13 = -2x + 3
Adding and Subtracting Radicals
Classwork
Add or subtract. All answers must be left in simplest radical form.
419. 420. 6421. 8
422. 423. 424.
425. 426. 427.
428. 429. 430.
Adding and Subtracting Radicals
Homework
Add or subtract. All answers must be left in simplest radical form.
431. 432. 433.
434. 435. 436.
437. 438. 439.
440. 441. 442.
Spiral Review
443. Work out:444. Subtract:445. Solve:446. Multiply:
-6 + 5(4) – 3(2 + 3) 6 – x – 3x = 30 (x + 4)(4x – 1)
Multiplying Radicals
Classwork
Multiply. All answers must be left in simplest radical form.
447. 448. 449.
450. 451. 452.
453. 454. 455.
456.
Multiplying Radicals
Homework
457. 458. 459.
460. 461. 462.
463. 464. 465.
466.
Spiral Review
467. Work out:468. Multiply:469. Solve:470. Divide:
8b – 3(1 – b) = 6b – 4
Dividing Radicals
Classwork
Divide. All answers must be left in simplest radical form.
471. 472. 473. 474.
475. 476. 477. 478.
479. 480. 481. 482.
Dividing Radicals
Homework
Divide. All answers must be left in simplest radical form.
483. 484. 485. 486.
487. 488. 489. 490.
491. 492. 493. 494.
Spiral Review
495. Work out:496. Factor:497. Multiply:498. Factor:
(10)(2) – (4)(3) + (3)(9) 25y2 – 64 (2x – 5)(2x + 5) 64x3 + 125
Review
Multiple Choice
1. 4x + 5 ≤ 2x – 3 is equivalent to:
a. x ≤ -4b. x ≤ 1c. x ≤ 4 d. x ≥ -4e. x ≥ 4
2. If , what is n equal to?
a. 2b. 10 c. 20 d. 25e. 40
3. Which of the following values of x makes this expression true: 54 < 3x?
a. 17b. 18c. 20d. -54
4. If n + n + n = 216, what is the value of n?
a. 6b. 36c. 72d. 74
5. What is the value of x if 10x – 15 = 5x + 20?
a. 1/3b. 5c. 7d. 35
6. Simplify:
a. b. 75xc. d. e.
7. Simplify:(-a2b3)3
a. a5b6b. -a5b6c. a6b9d. -a6b9e. -3a6b9
8. If , then x =
a. -10b. -1c. 1d. 8e. 43
9. Which expression is equivalent to the following equation: 2x – (5x – 3) = x + 7?
a. 10x + 6x = x + 7b. 7x – 3 = x + 7c. 7x + 3 = x + 7
d. -3x + 3 = x + 7e. 3x – 3 = x + 7
10. Simplify: 4-2
a. -16b. -8c. d. e.
11. What is the exponent of x after (-4x3y2)2 is simplified?
a. 16b. 9c. 6d. 3e. 2
12. Simplify:
a. y4b. y3c. xy3d. xy4e. x4y8
13. One of the solutions of the equation (x – 5)(3x + 4) = 0 is:
a. -5b. c. d. e.
14. One of the factors of x2 + x – 6 is
a. x + 3b. x + 2c. x + 1d. x – 3e. x – 6
15. Which of the following is a factor of 6x2 + 7x – 3?
a. (6x – 3)b. (3x – 1)c. (2x + 1)d. (3x + 3)e. (7x + 6)
16. is equal to:
a. b. c. 2 d. 6 e. 18
17. is the same as:
a. 2 b. 5 c. 5 d. 10e. 25
18. Solve: 2x3 – 9x2 + 9x = 0
a. 3, , 0b. -3, c. d.
19. Which of the following is a factor of 2x2 + 7x + 6?
a. (2x + 3)b. (2x + 6)c. (x + 3)d. (2x + 7)
20. Simplify:
a. b. c. d.
Short Answer – Additional Practice
Solve the following equations:
21. 2x - 1 = 5x + 322. 4x - 5 = 2x – 17
23. 8b – 3(1 – b) = 6b – 424. 19 – (2x + 3) = 2(x + 3) + x
25. 26. 6x – 5 = 2x + 1127.
28. 6a + 2 = 4a – 829. -4 – b = -9(b – 8) - 230.
Solve the following inequalities:
31. 6a + 2 ≤ 4a – 832. 6 – x – 3x > 30
33. 4b – (3 – b) < 7b – 1534. 8y – 3 – 9y ≥ 5 + 4y – 12
Factor out the GCF:
35. x2 + 7x36. 3x2 + 9x37. 12m3 – 4m2
38. 24x5 + 36x3 – 18x239. 16m4n3 – 12m3n4 + 4m2n5
Factor:
40. x2 + 5x – 641. 3x2 + x – 242. 8x2 – 2x – 1
43. x2 – 2x – 1544. 2m2 + 7m + 545. 10x2 +17x + 3
46. x3 - 2747. 81x2 – 4y248. 2x2 – 11x + 12
49. 8m3 + n350. 6ab – 3b – 10a + 551. 2xy + 3x + 8y + 12
52. 3mn + 12m – 5n – 2053. 3x3y – 6x2y – 45xy54. 20m4 – 45m2
Find the solution for each equation by factoring. Show all work in the space provided.
55. 4x2 – 12x = 056. 3x2 + 9x = 057. x2 + 7x – 18 = 0
58. 2x2 = 19x + 3359. 3 + 5x – 2x2 = 060. x3 – 2x2 – 3x = 0
61. x4 + 2x3 – 8x – 16 = 062. 6x3 – 22x2 – 8x = 063. 6x3 – 17x2 + 12x = 0
Simplify:
64. (m2n5)465. x2x5x 66. 67.
68. ( -3x3y)2(2x)69. m3m4m3m70. (xy)2(x3y)71. (-3x3)(-4x5)
72. (3x2y3)3 73. 74. 75.
Simplify and write with Positive Exponents:
76. m-377. -4m0n-378. x-3y-279.
Simplify:
80. 81. 82. 83.
84. 85. 86. 87.
88. 89. 90.
Fundamental Skills of Algebra
Classwork and Homework Key
Alg. II – Fund. Skills~1~NJCTL.org
- x = 1
- m = 1
- n = -6
- p = -23/4
- No Solution
- y = ¼
- x = 3
- m = 5/2
- p = -5
- x = 5
- x = -5
- m = 3
- x = 9/2
- No Solution
- p = 18
- m = 1
- k = 7/6
- n = 3
- x = -19/2
- y = -3/4
- 80
- 19
- x = -7/5
- m = 24
- y = 13/33
- k = -165/2
- m = -66/35
- k = -40/11
- x = -85/4
- p = -100/3
- m = 10/3
- x = -20
- x = 5
- m = -18/7
- k = -26/39
- n = -100/3
- y = 105/8
- x = 2/7
- x = -38/11
- y = 105/52
- p = -42/11
- m = 0
- 19/15
- 5/64
- 6
- -30
- b2 = c2 – a2
- -63
- x ≥ 2
- 6
- 82
- xy2(3y4 + 2y2 – 6)
- 3x2y(2xy – 1)
- 5p2q(2p – 3pq – q)
- 2m3n2(4mn + 6m – n)
- -2ab4(6a2 – 2a – 5)
- 7m3(n3 – n2 + 2)
- -3x3(2y2 – y – 2)
- 6m3n2(1 – 2m)
- 4x2y(2x – y)
- 4mn3(2m2 – m – 8)
- -3pq(6p2q – 1)
- -8x(y + 2 – x)
- p(2p5 + 3p3 + 1)
- 3m3n2(4m2 + 3mn + n2)
- -3p3(2p – 3q + 1)
- 2xy4(1 – 3x2 + 6x3)
- –x(x2y – x – 3)
- 2mn(6m2 – n – 1)
- a3b(a5 + a3b + b3)
- -12
- 267
- (x – 8)(x + 3)
- (a – 3b)(a – 2b)
- (y + 5)(y + 5)
- (m – 3n)(m + 2n)
- (x – y)(x – y)
- (a + 4b)(a – 3b)
- (p + 6)(p + 4)
- (x – 4y)(x – 2y)
- (p – 10)(p – 3)
- (a + 3b)(a + 4b)
- (m – 6)(m + 4)
- (a - 12)(a – 1)
- (n + 3)(n – 2)
- (x – 7y)(x – 3y)
- (x + 9y)(x + 2y)
- (m – 5)(m + 1)
- (a + 8b)(a – 2b)
- (x – 10)(x – 2)
- (n + 3)(n + 4)
- (a – 9b)(a + 3b)
- 5
- 82
- (2x + 1)(x + 3)
- (3x – 2)(2x + 1)
- (5a – 3)(a + 4)
- (2m – n)(3m – n)
- (6p + 1)(p + 6)
- (3b – 2c)(4b + 3c)
- (m + 3)(4m + 5)
- (2c + 5d)(2c + 5d)
- (6m – 1)(2m – 3)
- (4m – 5p)(6m – 5p)
- (3x – 1)(2x – 1)
- (3p – 5)(5p + 1)
- (2m + 3)(5m – 1)
- (4x – y)(3x – y)
- (2p + 7)(2p + 5)
- (3m – 2n)(5m – n)
- (2p + 3)(p + 5)
- (x + y)(4x + y)
- (2p – 5)(3p – 5)
- (4m – n)(5m – n)
- 111
- 157
- (a – 1)(a2 + a + 1)
- (5x – 4y)(5x + 4y)
- (11a – 4b)(11a + 4b)
- (3x + 2y)(9x2 + 6xy + 4y2)
- (ab – c)(a2b2 + abc + c2)
- (2xy – 1)(2xy + 1)
- (6m – 5n)(6m + 5n)
- (2m + n)(4m2 – 2mn + n2)
- (a – 7)(a + 7)
- Not Factorable
- (y + 3)(y2 – 3y + 9)
- (4m – 1)(16m2 + 4m + 1)
- (p – 6q)(p + 6q)
- (mn – 2)(mn + 2)
- Not Factorable
- (2x – 3y)(4x2 + 6xy + 9y2)
- (p – qr)(p2 + pqr + q2r2)
- (5m – 1)(25m2 + 5m + 1)
- (5x – 9)(5x + 9)
- (10x – y)(10x + y)
- 10
- 13
- -22
- -2
- (x + 4)(2y + 5)
- (3m – 5)(3n – 1)
- (2x – 3)(y – 5)
- (5r + 3)(2s – 5)
- (2p – 1)(5q – 1)
- (5m + 3)(2n + 1)
- (x + z)(y – 1)
- (2k – 9)(m + 7)
- (z + 4)(x – y)
- (3 – 4y)(2x + 5)
- (2m – 5)(3p – 1)
- (3x + 2)(2y + 5)
- (4r + 3)(s – 1)
- (3t – 1)(2r – 3)
- (4m + 3)(2n + 1)
- (x – 5)(3y – 4)
- (m – 1)(n – 1)
- (3q – 4)(2r + 5)
- (5m – 3)(2m – 3)
- (3p – 4)(3q – 4)
- 3x(x – 3)(x – 4)
- 2m(3m – 1)(m + 1)
- 3ab(a – 4)(a + 4)
- 2x(3x + y)(9x2 – 3xy + y2)
- x2y(x + 10)(x + 2)
- -3mn(2m – 1)(m + 4)
- 4pq(p – 4)(q – 3)
- -2x3(2x + y)(4x2 – 2xy + y2)
- -5m2n(m – 3)(2m – 1)
- 4p(5p – 4q)(5p + 4a)
- 3m(m – n)(m + n)
- -2x(3x – 1)(x + 5)
- 2ab(3a – 5)(3a + 5)
- xy(x + 3)(x2 – 3x + 9)
- -3r(4r + 3)(r + 1)
- 2xy(x – 1)(y – 1)
- mn(2m – n)(3m – n)
- –pq(p – q)(p + q)
- 10(3x + 4)(2x + 5)
- -4mn(2m + 1)(m + 1)
- 32
- 227
- x = 0, 4, -4
- p = 0, -1, -3
- y = 0, 4, -5
- m = 0, 1, -3
- x = 0, 6, 4
- m = 0, -4, -8
- p = 0, 8, -8
- -66
- x = 3
- (5x – 6)(5x + 6)
- x6y6
- -8m4n8
- -21x7y5
- 12p4q6
- 15m2n2p4
- 20k5r9
- -24x9y3z10
- 12p4q11
- -15r8s6
- -10x2y8
- -12x5y6
- -6m5n7
- 36r10s7
- -10x3y15z5
- 20r4s13
- –m5n9p4
- 12p2q4r6
- 8m4n5
- 28x4y5
- 12m10n19
- -12x5y9
- x > 7
- -4m2n
- 9s3
- 13
- -13xy6
- No Solution
- x ≥ 6
- -125m9n9
- 4x8y2z12
- 81m4n12p12
- No Solution
- -4m-4n-3p-5
- x-4y-5z3
- -4a-3b4c6d7
- -9w3x6y8z-1
- -2p2q2r5
- -9x-3y4z5
- 24m7n5p3q-4
- -3x-4y-5z-3
- -4r3s-3t-7
- 6
- 64n6
- 1
- (x – 3y)(x2 + 3xy + 9y2)
- 6x2 + 13x – 5
- (4x – 1)(4x + 1)
- -6
- -9n
- -25
- -71
- x = 2
- 0
- 1
- x = -6
- 4x2 + 15x – 4
- 150r2s4
- 7
- 3
- 3
- 2
- 2a
- 3
- 35
- (5y – 8)(5y + 8)
- 4x2 – 25
- (4x + 5)(16x2 – 20x + 25)
Alg. II – Fund. Skills~1~NJCTL.org
Alg. II – Fund. Skills~1~NJCTL.org
Answers to Review
- A
- E
- C
- C
- C
- C
- D
- D
- D
- D
- C
- A
- B
- A
- B
- A
- C
- A
- A
- A
- 6
- 1/5
- x < -6
- b > 6
- 3x(x + 3)
- 4m2(3m – 1)
- 6x2(4x3 + 6x – 3)
- 4m2n3(4m2 – 3mn + n2)
- (x + 3)(x – 2)
- (x + 1)(3x – 2)
- (2x – 1)(4x + 1)
- (x – 5)(x + 3)
- (2m + 5)(m + 1)
- (2x + 3)(5x + 1)
- (x – 3)(x2 + 3x + 9)
- (9x – 2y)(9x + 2y)
- (x – 4)(2x – 3)
- (2m + n)(4m2 – 2mn + n2)
- (3b – 5)(2a – 1)
- (x + 4)(2y + 3)
- (3m – 5)(n + 4)
- 3xy(x – 5)(x + 2)
- 5m2(2m – 3)(2m + 3)
- x = 0, 3
- x = 0, -3
- x = -9, 2
- x = 2, -2
- m8n20
- x8
- a4b2
- -6x3y4
- 18x7y2
- m11
- x5y3
- 12x8
- 27x6y9
- 2xy4
- 16a8b12
- 81x4y2
- 81x2
- 2
Alg. II – Fund. Skills~1~NJCTL.org