Supplementary Table 1. Overview of renal damage-related QTLs and their chromosomal location, as reported in the literature.

QTL name Chromosomal location Reference

Albuminuria

Pur1 13q131

Pur2 10q12-q32.1 2

Pur3 15p16-p12 3

Pur4 1q55 4

Pur5 8q21-q31 4

Pur6 9q31-q374

Pur7 2 4

Pur8 6 4

Pur9 9 4

Pur10 10 4

Pur11 13 4

Pur12 25

Pur13 3 5

Pur14 17 5

Pur15 205

Uae1 1q22-q36 6

Uae2 6q23-q316

Uae3 12p12-p11 6

Uae4 17p12-q12.3 6

Uae5 1q32-q55 2

Uae6 2q22-q43 2

Uae7 6q23-q32 2

Uae8 8q21-q31 2

Uae9 9q13-q37 2

Uae10 11q11-q23 2

Uae11 13q13-q23 2

Uae12 19p14-q12 2

Uae13 2q11-q12 7

Uae14 6q24-q32 7

Uae15 8q13-q24 7

Uae16 9q31-q36 7

Uae17 10q22-26 7

Uae18 11q11-q12 7

Uae19 19p13-q12 7

Uae20 1q51-q553

Uae21 4q34-q413

Uae22 6q22-32 3

Uae23 7q34q36 3

Uae24 8q13-q31 3

Uae25 9q13-q36 3

Uae26 15q21-q25 3

Uae27 Xq13-q213

Uae28 6q11-q13 8

Uae29 19p14-q11 8

Uae30 1q36-q55 4

Uae31 8q21-q31 4

Uae32 2 4

Uae33 6 4

Uae34 9 4

Uae35 11 4

Uae36 13 4

Renal function

Rf1 1q54-q559

Rf2 1q31-q32 9

Rf3 3q36-q42 10

Rf4 14p22-p21 10

Rf5 17p11-q12.3 10

Rf6 1p13-p12 11

Rf7 1q37-q51 11

Rf8 1q52-q55 11

Rf9 2q26-q41 11

Rf10 3q42-q43 11

Rf11 3q36-q42 11

Rf12 3q23-q36 11

Rf13 4q42-q44 11

Rf14 6q14-q23 11

Rf15 6q12-q21 11

Rf16 6q12-q14 11

Rf17 8q11-q13 11

Rf18 10q26-q32.1 11

Rf19 11q12-q23 11

Rf20 11q11-q21 11

Rf21 12p11-q15 11

Rf22 14p11-q22 11

Rf23 15p12-q25 11

Rf24 16p16-p14 11

Rf25 17q12.3 11

Rf26 18q12.1-q12.2 11

Rf27 1p13-p11 12

Rf28 1p13-q21 12

Rf29 1p13-q12 12

Rf30 3p13-q12 12

Rf31 4q11-q21 12

Rf32 5q11-q36 12

Rf33 5q11-q21 12

Rf34 5q11-q21 12

Rf35 5q11-q21 12

Rf36 5q11-q21 12

Rf37 6q11-q23 12

Rf38 6q11-q16 12

Rf39 8q11-q22 12

Rf40 10q11-q21 12

Rf41 12p12-q14 12

Rf42 15p16-p14 12

Rf43 17p14 12

Rf44 18p13-p12 12

Rf45 19p14-p11 12

Rf46 1p13-q22 13

Rf47 13p13-q27 13

Rf48 1q11-q22 13

Rf49 17p14-q11 13

Rf50 2q11-q16 13

Rf51 1q51-q55 14

Rf52 1 15

Rf53 3 15

Rf54 5 16

Rf55 1 17

Rf56 1 17

Others

Coreg1 6q14-q21 18

Coreg2 4q42 18

Glom1 X 6

Glom2 1q52-q55 6

Glom3 13q13-q22 6

Glom4 2 3

Glom5 7q34-q36 3

Glom6 9q33-q36 3

Glom7 6q23-q31 3

Glom8 6q24-q32 3

Glom9 2 19

Glom10 11 19

Glom11 18 19

Glom12 5 19

Glom13 1 19

Glom14 15 19

Klgr1 8q21-q31 4

Rends1 1q32-q41 20

Rends2 1p12-q12 21

Rends3 10q31-q32.1 21

Rends4 16p16-p14 21

Abbreviations:

Pur, Proteinuria; Uae, Urinary albumin excretion; Rf, Renal function; Coreg, Compensatory renal

growth QTL; Glom, Glomerulus QTL; Klgr, Kidney lesion grade QTL; Rends, Renal damage

susceptibility QTL.

References

1. Murayama, S. et al. A genetic locus susceptible to the overt proteinuria in BUF/Mna rat.

Mamm Genome 9, 886-8 (1998).

2. Garrett, M.R., Dene, H. & Rapp, J.P. Time-course genetic analysis of albuminuria in Dahl saltsensitive

rats on low-salt diet. J Am Soc Nephrol 14, 1175-87 (2003).

3. Schulz, A. et al. A major gene locus links early onset albuminuria with renal interstitial fibrosis

in the MWF rat with polygenetic albuminuria. J Am Soc Nephrol 14, 3081-9 (2003).

4. Garrett, M.R., Joe, B. & Yerga-Woolwine, S. Genetic linkage of urinary albumin excretion in

Dahl salt-sensitive rats: influence of dietary salt and confirmation using congenic strains.

Physiol Genomics 25, 39-49 (2006).

5. Yagil, C., Sapojnikov, M., Wechsler, A., Korol, A. & Yagil, Y. Genetic dissection of proteinuria in

the Sabra rat. Physiol Genomics 25, 121-33 (2006).

6. Schulz, A., Litfin, A., Kossmehl, P. & Kreutz, R. Genetic dissection of increased urinary albumin

excretion in the munich wistar fromter rat. J Am Soc Nephrol 13, 2706-14 (2002).

7. Poyan Mehr, A. et al. Early onset albuminuria in Dahl rats is a polygenetic trait that is

independent from salt loading. Physiol Genomics 14, 209-16 (2003).

8. Siegel, A.K. et al. Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on

a high-salt diet: comparison with spontaneously hypertensive rats. Physiol Genomics 18, 218-

25 (2004).

9. Brown, D.M., Provoost, A.P., Daly, M.J., Lander, E.S. & Jacob, H.J. Renal disease susceptibility

and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet

12, 44-51 (1996).

10. Shiozawa, M., Provoost, A.P., van Dokkum, R.P., Majewski, R.R. & Jacob, H.J. Evidence of

gene-gene interactions in the genetic susceptibility to renal impairment after unilateral

nephrectomy. J Am Soc Nephrol 11, 2068-78 (2000).

11. Moreno, C. et al. Genomic map of cardiovascular phenotypes of hypertension in female Dahl

S rats. Physiol Genomics 15, 243-57 (2003).

12. Stoll, M. et al. A genomic-systems biology map for cardiovascular function. Science 294,

1723-6 (2001).

13. Bilusic, M. et al. Mapping the genetic determinants of hypertension, metabolic diseases, and

related phenotypes in the lyon hypertensive rat. Hypertension 44, 695-701 (2004).

14. Iwai, N., Kinoshita, M. & Shimoike, H. Chromosomal mapping of quantitative trait loci that

influence renal hemodynamic functions. Circulation 100, 1923-9 (1999).

15. Van Dijk, S.J., Specht, P.A., Lazar, J., Jacob, H.J. & Provoost, A.P. Synergistic QTL interactions

between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats. Kidney

Int 69, 1369-76 (2006).

16. Roman, R.J. et al. Characterization of blood pressure and renal function in chromosome 5

congenic strains of Dahl S rats. Am J Physiol Renal Physiol 290, F1463-71 (2006).

17. Lopez, B. et al. Identification of a QTL on chromosome 1 for impaired autoregulation of RBF

in fawn-hooded hypertensive rats. Am J Physiol Renal Physiol 290, F1213-21 (2006).

18. Pravenec, M. et al. Chromosomal mapping of a major quantitative trait locus regulating

compensatory renal growth in the rat. J Am Soc Nephrol 11, 1261-5 (2000).

19. Herrera, V.L., Tsikoudakis, A., Ponce, L.R., Matsubara, Y. & Ruiz-Opazo, N. Sex-specific QTLs

and interacting loci underlie salt-sensitive hypertension and target organ complications in

Dahl S/jrHS hypertensive rats. Physiol Genomics 26, 172-9 (2006).

20. St Lezin, E. et al. Genetic isolation of a chromosome 1 region affecting susceptibility to

hypertension-induced renal damage in the spontaneously hypertensive rat. Hypertension 34,

187-91 (1999).

21. Gigante, B. et al. Contribution of genetic factors to renal lesions in the stroke-prone

spontaneously hypertensive rat. Hypertension 42, 702-6 (2003).