ABC AUCTIONS ANALYSIS1

Predicting Profit for ABC Auctions

BSAD 6312: Regression

Demetria Henderson

College of Business

University of Texas at Arlington

ABC Auctions is an established wholesale vehicle auction that has been in business for over 50 years. The company has over 20,000 employees in 100 locations worldwide. Within North America, the company operates over 75 auctions and handles approximately 500,000 cars with 11,000 full time employees. The company does business with more than 75,000 auto dealers and generates annual revenues of a billion dollars.

In an effort to understand the performance of the company, archival data was collected from seventy-five of the North American auction locations. The variables included such items as total number of cars sold, gross revenue, and earnings (see Appendix A for a full list of variables). The purpose of this study is to determine which variables predict the profitability of ABC Auctions by using multiple regression analysis.

The dependent variable of profitability was defined as earnings as a percentage of revenue. A total of seven independent variables: legacy; full-time turnover rate; part-time turnover rate; cars sold; workman’s comp claims per 10,000 cars consigned; lot damage per cars consigned; and Occupational and Safety Health Administration (OSHA) incidents per 10,000 cars consigned, were selected to run through the All Possible Regressions Procedure in NCSS. The All Possible Regressions Report (see Appendix B) was utilized to help determine which variables generated the best model, that is, which model did a better job of explaining the relationship with auction performance and the independent variables. In reviewing the results of the R2 vs. Variable Count Plot, it was determined that four variables would be sufficient in the model, as there was not much increase in variance explained beyond four variables.The model chosen for the initial run included number of cars sold, full-time turnover, lot damage per car, and OHSA per car. In the model chosen, the R2 was .5735 which indicates that the total variance explained by the model was 57.3% which was larger than the next best model which accounted for only 53.6% of the variance based on the R2 statistic.

In reviewing the results of the model (see Appendix B), all independent variables except for number of cars sold were statistically significant from zero at an α=.05 level. There appeared to be an issue with the variable for number of cars sold, as it had a p-value = 1.0; and NCSS was not able to compute confidence intervals for this independent variable. Additionally, there was no issue with multicollinearity and normality was not violated based on the results of the statistical tests. Additionally, the normal probability plot had all points falling within the bands and the histogram of the residuals followed a nice bell shape curve, further suggesting that the assumption of normality was not being violated. The residual plots seemed to have good random scatter about the mean suggesting that there was no clear evidence of a violation with independence or equal variance. Observations 41 and 68, auctions located in Lexington and St. John’s respectively, based on the values of Rstudent. In addition to the results of the t-test of the parameter, the partial residual plot for number of cars sold did not yield a linear relationship, suggesting that a transformation may be necessary. In addition, the linear relationship in the partial residual plot for OSHA accidents was not very strong.

Therefore, several transformations were attempted in an effort to improve the model and the relationship of number of cars sold with firm performance. The first transformation attempted took the natural log of the number of cars sold. The R2 for the model increased to .5902, and all independent variables in the model were significantly different from zero; however, the b0 was no longer significant. The assumptions for normality, independence, and equal variance did not appear to be violated. The same auctions from the original run presented as outliers in addition to Lincoln. The partial residual plot for number of cars sold appeared to be more linear. Next, I tried the log of the number of cars sold and saw very similar results to the model which used the natural log. However, the intercept was still not significant, so I then attempted an interaction term with the natural log of number of cars sold with the rate of the full-time employee turnover. This model had an R2 of .5903, unfortunately the interaction term and the variables which were included in the interaction term were not significantly different from zero. Lastly, I tried the inverse of the number of cars sold.

The model with the inverse of number of cars sold resulted in the best results for the data (see Appendix D). The final model is:

EarningsPercent = 51.2 – .13*ftturn – 82079.59*inverse_sold – 11.47*lotdampercar – 1.11*oshapercar

The model had an R2 of .5968 indicating that 59.7% of the total variance could be explained by the model. The result of the F-test for the model was significant with a p-value less than .05. In addition, all parameter estimates were found to be significantly different from zero with p-values less than .05. The five statistical tests for normality all failed to reject the null hypothesis, suggesting that normality was not violated. Furthermore, the plot of the histogram of the residuals along with the normal probability affirmed that normality did not appear to be violated. Multicollinearity was not introduced into the model as there were not variance inflation factors (VIF) greater than 10. The residual plots all show random scatter about the mean of zero indicating no evidence of violation with the assumptions for independence or equal variance. In addition the partial residual plots for the independent variables all show a negative linear pattern. Three auction locations presented as outliers with an Rstudent greater than 2: Lexington, Lincoln, and St. John’s. Interestingly, both Lexington and Lincoln have fairly high profits, however, based on the model, their predicted profits are estimated to be much lower as the number of damages and accidents reported are very high in comparison to auction lots within the similar range of profit margins. Whereas, St. John’s appears to be underperforming based on the model in large part due to its low safety numbers. The Central Arkansas and Ocala auction locations, very poor performers,have a little leverage with Hat’s Matrix values of .2 and .3.

In conclusion, the model indicates that performance, employee turnover, and safety are all important in determining the profits for the ABC Auction locations. It is clear that as full-time employee turnover, number of accidents reported, and the amount of damages increases; the earnings profits are negatively impacted. Although, the parameter estimate for the inverse function of the number of cars sold is negative, as the number of cars increases, the inverse function gets smaller, thus resulting in a less negative impact on profit earnings.

Appendix A

Archival Performance Auction Data

Variable Name / Definition
Idno / Numerical identifier for cases
Auction / Name of auction unit
Consign / Total number of cars consigned
Sold / Total number of cars sold
Lotdamag / Total lot damage per year
Grossrev / Gross revenue per year
Ebitdal / Earnings
Ftterm / Full time terminations per year
Fthead / Full time headcount at end of year
Ptterm / Part time terminations per year
Pthead / Part time headcount at end of year
Wcclaims / Workman’s comp claims per year
OSHA / OSHA reportable incidents per year
Legacy / Auction origin within ABC
Earningspercent / Earnings/Revenue*100 (calculated)
Ftturn / Full time turnover percentage (calculated) (Terminations/Headcount*100)
Ptturn / Part time turnover percentage (calculated)
Wcpercar / Workman’s Comp claims per 10,000 cars consigned (calc) (Comp claims/Consignments*10000)
Lotdampercar / Lot damage per cars consigned (calculated)
(Lot damage/Consignments)
OSHApercar / OSHA incidents per 10,000 cars consigned (calculated) (OSHA/Consignments*10000)

Appendix B

All Possible Regressions Report

All Possible Results Section

ModelRoot

SizeR-SquaredMSECpModel

10.02218711.91887 85.785165A (sold)

10.0000000 -71.000000E (wcpercar)

10.0000000 -71.000000G (lotdampercar)

10.0000000 -71.000000B (legacy)

10.0000000 -71.000000F (oshapercar)

10.0000000 -71.000000C (ftturn)

10.0000000 -71.000000D (ptturn)

20.4554258.956353 18.318634AG

20.19163110.91207 60.615954AF

20.13207311.30691 70.165727AC

20.11503511.41735 72.897641AE

20.05541511.79567 82.457178AD

20.03454211.92529 85.804049AB

30.5213738.45547 9.744251ACG

30.4890448.736374 14.928088AFG

30.4664028.927839 18.558477ADG

30.4559759.014648 20.230416ABG

30.4558669.015551 20.247887AEG

30.3346219.969513 39.688651ACF

30.29105310.29073 46.674398ACE

30.22098710.78728 57.909056ADF

30.19321610.97786 62.361795ABF

30.19263410.98182 62.455113AEF

40.5734528.039024 3.393803ACFG

40.5340538.402098 9.711158ACEG

40.5248578.484607 11.185708ACDG

40.5214448.515019 11.732858ABCG

40.5035448.672813 14.603107AEFG

40.5007348.697324 15.053679ADFG

40.4890468.798533 16.927683ABFG

40.4664478.991002 20.551236ABDG

40.4664058.991357 20.557976ADEG

40.4564649.074724 22.151919ABEG

50.5766258.0669 4.885100ACDFG

50.5746918.085305 5.195217ACEFG

50.5741128.0908 5.287950ABCFG

50.5349808.454345 11.562599ACDEG

50.5341908.46152 11.689210ABCEG

50.5248578.545865 13.185652ABCDG

50.5239508.554019 13.331103ADEFG

All Possible Results Section

ModelRoot

SizeR-SquaredMSECpModel

50.5040528.730959 16.521574ABEFG

50.5011208.756731 16.991729ABDFG

50.4664539.055876 22.550386ABDEG

60.5798238.095247 6.372266ACDEFG

60.5778298.114436 6.692043ABCDFG

60.5756838.135036 7.036172ABCEFG

60.5350258.515867 13.555333ABCDEG

60.5269698.589317 14.846961ABDEFG

60.35400310.03758 42.580795ABCDEF

70.5821458.132874 8.000000ABCDEFG

Plots Section

Appendix C

Initial Multiple Regression Model

Run Summary Section

ParameterValueParameterValue

Dependent VariableearningspercentRows Processed75

Number Ind. Variables4Rows Filtered Out0

Weight VariableNoneRows with X's Missing0

R20.5735Rows with Weight Missing0

Adj R20.5491Rows with Y Missing0

Coefficient of Variation0.3081Rows Used in Estimation75

Mean Square Error64.62592Sum of Weights75.000

Square Root of MSE8.039024Completion StatusNormal Completion

Ave Abs Pct Error51.466

Regression Equation Section

RegressionStandardT-ValueRejectPower

IndependentCoefficientErrorto test ProbH0 atof Test

Variableb(i)Sb(i)H0:B(i)=0Level5%?at 5%

Intercept45.91093.448413.3140.0000Yes1.0000

ftturn-0.12360.0332-3.7220.0004Yes0.9564

lotdampercar-12.17161.9442-6.2610.0000Yes1.0000

oshapercar-1.24630.4263-2.9230.0047Yes0.8220

sold0.00010.00000.0001.0000No0.0500

Estimated Model

45.9109493437341-.123625180145166*ftturn-12.1715683121402*lotdampercar-1.24625176987581*oshapercar+ 6.59602844882437E-05*sold

Regression Coefficient Section

IndependentRegressionStandardLowerUpperStandardized

VariableCoefficientError95% C.L.95% C.L.Coefficient

Intercept45.91093.448439.033352.78860.0000

ftturn-0.12360.0332-0.1899-0.0574-0.2966

lotdampercar-12.17161.9442-16.0491-8.2940-0.5431

oshapercar-1.24630.4263-2.0965-0.3960-0.2730

sold0.00010.00000.1328

Note: The T-Value used to calculate these confidence limits was 1.994.

Analysis of Variance Section

Sum ofMeanProbPower

SourceDFR2SquaresSquareF-RatioLevel(5%)

Intercept151068.7551068.75

Model40.57356081.8281520.45723.5270.00001.0000

Error700.42654523.81464.62592

Total(Adjusted)741.000010605.64143.3195

Normality Tests Section

TestTestProbReject H0

NameValueLevelAt Alpha = 20%?

Shapiro Wilk0.99470.989761No

Anderson Darling0.14690.966804No

D'Agostino Skewness0.33780.735526No

D'Agostino Kurtosis-0.16170.871531No

D'Agostino Omnibus0.14020.932278No

Multicollinearity Section

VarianceR2Diagonal

IndependentInflationVersusof X'X

VariableFactorOther I.V.'sToleranceInverse

ftturn1.04210.04040.95961.707224E-05

lotdampercar1.23490.19020.80985.848773E-02

oshapercar1.43090.30110.69892.81199E-03

sold0.00000

Predicted Values with Confidence Limits of Means

Standard95% Lower95% Upper

ActualPredictedError ofConf. LimitConf. Limit

Row earningspercent earningspercent Predicted of Mean of Mean

119.95630.6672.12126.43734.896

237.44031.8971.56328.77835.015

342.09327.2821.26124.76829.797

426.88426.3211.55523.22029.423

521.18123.1411.96119.23027.051

635.65338.9211.80835.31642.527

720.09117.3543.46210.44924.259

836.96529.1421.55026.05032.234

937.70532.0061.31929.37534.636

1016.36726.1842.90820.38431.983

111.91215.6932.70310.30121.085

1230.00325.4741.71122.06228.886

1327.03127.3883.67620.05734.719

1436.27331.8751.50528.87434.876

1515.57926.9841.44324.10529.863

1628.82519.1701.75215.67522.665

1719.6926.4602.9980.48212.439

1816.36529.0481.81025.43932.657

1942.30828.3131.57925.16531.462

2036.33432.4671.55229.37135.562

2126.96926.6182.06522.50030.736

2242.74835.3292.15431.03239.626

2325.80431.3591.45628.45634.263

24-4.0723.0632.955-2.8318.957

2514.51023.4482.12819.20527.691

2625.52727.2832.03523.22531.341

2713.25123.0482.68217.69928.396

2841.95742.0432.36137.33446.752

2929.69136.4972.27731.95641.037

3025.86130.0901.65226.79533.385

310.6447.1412.7891.57912.703

3234.22436.4732.36231.76341.184

3321.55529.8831.04827.79331.973

3421.53229.7711.59826.58332.958

3527.23331.6571.60328.46134.853

3623.74528.5491.83024.89832.200

3734.28833.8812.00529.88337.880

3826.53230.2971.77826.75133.844

3923.35218.0831.64814.79521.370

4033.50923.4821.05521.37725.587

4140.03119.7491.28117.19522.304

4236.72321.5711.57118.43724.705

4317.85120.2072.08216.05424.360

Predicted Values with Confidence Limits of Means

Standard95% Lower95% Upper

ActualPredictedError ofConf. LimitConf. Limit

Row earningspercent earningspercent Predicted of Mean of Mean

4422.24523.5992.26219.08828.110

45-4.072-2.9843.154-9.2733.306

4629.12332.0071.26729.48034.535

4725.80430.8981.17428.55633.240

4827.51723.8702.06519.75127.990

4932.30721.2051.24718.71723.693

5019.95631.7601.39928.96934.550

51-10.387-2.0183.338-8.6764.640

5214.51015.3882.45410.49320.282

5339.92134.4411.84730.75638.125

5441.95740.2532.31535.63744.870

5516.36721.9262.17117.59626.255

5639.92134.4291.63231.17437.685

5732.00427.8021.87224.06731.536

5827.51722.9472.12318.71227.182

5922.24521.8262.61416.61327.040

6010.13116.8032.26712.28021.325

6137.28530.7811.33228.12433.438

6226.75723.8651.10621.65926.072

6329.12332.3861.35429.68635.085

6434.13833.3272.43928.46438.191

6515.70426.6171.29924.02729.207

6641.09830.9861.42528.14533.827

6721.55530.7011.36927.97133.431

6811.64831.5481.36028.83634.260

6923.93724.5172.01920.49128.543

7013.47210.4843.2983.90617.063

7121.78416.0453.0869.88922.201

7242.47433.8241.48930.85436.794

7340.79033.5651.94829.68037.450

7433.56826.2492.42621.41131.086

7544.56242.7242.63637.46747.981

Predicted Values with Prediction Limits of Individuals

Standard95% Lower95% Upper

ActualPredictedError ofPred. LimitPred. Limit

Row earningspercent earningspercent Predicted of Individual of Individual

119.95630.6678.31414.08547.248

237.44031.8978.19015.56348.230

342.09327.2828.13711.05343.512

426.88426.3218.1889.99142.652

521.18123.1418.2756.63739.644

635.65338.9218.24022.48855.355

720.09117.3548.753-0.10334.811

836.96529.1428.18712.81445.471

937.70532.0068.14715.75848.253

1016.36726.1848.5499.13443.233

111.91215.6938.481-1.22332.608

1230.00325.4748.2199.08241.866

1327.03127.3888.8409.75845.018

1436.27331.8758.17915.56348.186

1515.57926.9848.16810.69443.274

1628.82519.1708.2282.76035.579

1719.6926.4608.580-10.65123.572

1816.36529.0488.24012.61345.482

1942.30828.3138.19311.97444.653

2036.33432.4678.18716.13748.796

2126.96926.6188.30010.06443.172

2242.74835.3298.32318.73051.928

2325.80431.3598.17015.06547.654

24-4.0723.0638.565-14.01920.146

2514.51023.4488.3166.86340.033

2625.52727.2838.29210.74443.822

2713.25123.0488.4756.14639.950

2841.95742.0438.37925.33258.753

2929.69136.4978.35519.83353.161

3025.86130.0908.20713.72246.458

310.6447.1418.509-9.83024.112

3234.22436.4738.37919.76253.184

3321.55529.8838.10713.71446.052

3421.53229.7718.19613.42346.118

3527.23331.6578.19715.30848.006

3623.74528.5498.24512.10544.993

3734.28833.8818.28517.35750.406

3826.53230.2978.23313.87646.718

3923.35218.0838.2061.71634.449

4033.50923.4828.1087.31139.653

4140.03119.7498.1403.51435.985

4236.72321.5718.1915.23437.908

4317.85120.2078.3043.64536.770

Predicted Values with Prediction Limits of Individuals

Standard95% Lower95% Upper

ActualPredictedError ofPred. LimitPred. Limit

Row earningspercent earningspercent Predicted of Individual of Individual

4422.24523.5998.3516.94340.255

45-4.072-2.9848.635-20.20714.239

4629.12332.0078.13815.77648.238

4725.80430.8988.12414.69447.101

4827.51723.8708.3007.31640.424

4932.30721.2058.1354.98037.430

5019.95631.7608.16015.48548.034

51-10.387-2.0188.705-19.37915.342

5214.51015.3888.405-1.37632.151

5339.92134.4418.24917.98950.892

5441.95740.2538.36623.56956.938

5516.36721.9268.3275.31838.533

5639.92134.4298.20318.06950.790

5732.00427.8028.25411.33944.264

5827.51722.9478.3156.36439.530

5922.24521.8268.4534.96738.686

6010.13116.8038.3530.14433.462

6137.28530.7818.14914.52947.033

6226.75723.8658.1157.68140.050

6329.12332.3868.15216.12748.645

6434.13833.3278.40116.57350.082

6515.70426.6178.14310.37642.858

6641.09830.9868.16414.70347.269

6721.55530.7018.15514.43746.965

6811.64831.5488.15315.28747.809

6923.93724.5178.2897.98641.048

7013.47210.4848.689-6.84627.815

7121.78416.0458.611-1.12933.219

7242.47433.8248.17617.51850.130

7340.79033.5658.27217.06850.063

7433.56826.2498.3979.50142.996

7544.56242.7248.46025.85159.597

Residual Report

AbsoluteSqrt(MSE)

ActualPredictedPercentWithout

Row earningspercent earningspercent ResidualErrorThis Row

119.95630.667-10.71153.6737.986

237.44031.8975.54314.8068.068

342.09327.28214.81035.1857.893

426.88426.3210.5622.0928.097

521.18123.141-1.9609.2538.093

635.65338.921-3.2699.1698.087

720.09117.3542.73713.6238.089

836.96529.1427.82221.1628.040

937.70532.0065.69915.1158.067

1016.36726.184-9.81659.9757.997

111.91215.693-13.781720.8337.903

1230.00325.4744.52915.0968.078

1327.03127.388-0.3571.3218.097

1436.27331.8754.39812.1258.079

1515.57926.984-11.40573.2097.976

1628.82519.1709.65633.4978.009

1719.6926.46013.23167.1937.913

1816.36529.048-12.68377.5027.944

1942.30828.31313.99533.0787.913

2036.33432.4673.86710.6448.083

2126.96926.6180.3511.3018.097

2242.74835.3297.41917.3568.044

2325.80431.359-5.55521.5298.068

24-4.0723.063-7.135175.2318.044

2514.51023.448-8.93861.6038.020

2625.52727.283-1.7566.8818.094

2713.25123.048-9.79773.9328.000

2841.95742.043-0.0860.2048.097

2929.69136.497-6.80622.9238.052

3025.86130.090-4.22916.3538.080

310.6447.141-6.4971008.1748.054

3234.22436.473-2.2496.5728.092

3321.55529.883-8.32838.6378.034

3421.53229.771-8.23938.2638.034

3527.23331.657-4.42416.2468.079

3623.74528.549-4.80420.2328.075

3734.28833.8810.4071.1868.097

3826.53230.297-3.76514.1908.084

3923.35218.0835.26922.5648.071

4033.50923.48210.02729.9248.005

4140.03119.74920.28250.6657.710

4236.72321.57115.15241.2617.881

4317.85120.207-2.35613.2018.092

Residual Report

AbsoluteSqrt(MSE)

ActualPredictedPercentWithout

Row earningspercent earningspercent ResidualErrorThis Row

4422.24523.599-1.3546.0888.095

45-4.072-2.984-1.08826.7218.096

4629.12332.007-2.8849.9018.089

4725.80430.898-5.09419.7418.073

4827.51723.8703.64713.2538.084

4932.30721.20511.10134.3627.983

5019.95631.760-11.80459.1507.967

51-10.387-2.018-8.36880.5698.021

5214.51015.388-0.8786.0528.096

5339.92134.4415.48013.7288.069

5441.95740.2531.7044.0618.094

5516.36721.926-5.55933.9628.067

5639.92134.4295.49113.7568.069

5732.00427.8024.20213.1308.080

5827.51722.9474.57016.6078.077

5922.24521.8260.4191.8828.097

6010.13116.803-6.67265.8628.054

6137.28530.7816.50417.4458.058

6226.75723.8652.89210.8088.089

6329.12332.386-3.26211.2018.087

6434.13833.3270.8102.3738.096

6515.70426.617-10.91369.4927.987

6641.09830.98610.11124.6038.002

6721.55530.701-9.14742.4348.020

6811.64831.548-19.899170.8347.724

6923.93724.517-0.5802.4248.097

7013.47210.4842.98722.1768.087

7121.78416.0455.73926.3468.062

7242.47433.8248.65020.3678.027

7340.79033.5657.22417.7118.047

7433.56826.2497.31921.8058.044

7544.56242.7241.8384.1248.094

Regression Diagnostics Section

StandardizedHat

RowResidualRStudentDiagonalCook's DDffitsCovRatio

1-1.3813-1.39050.06960.0285-0.38031.0059

20.70300.70040.03780.00390.13891.0780

31.86541.89980.02460.01750.30170.8538

40.07130.07080.03740.00000.01401.1160

5-0.2514-0.24970.05950.0008-0.06281.1374

6-0.4173-0.41480.05060.0019-0.09571.1178

70.37720.37490.18550.00650.17891.3059

80.99170.99160.03720.00760.19491.0399

90.71870.71620.02690.00290.11911.0642

10-1.3098-1.31660.13080.0516-0.51081.0921

11-1.8203-1.85160.11310.0845-0.66120.9507

120.57660.57380.04530.00320.12501.0991

13-0.0499-0.04960.20910.0001-0.02551.3584

140.55700.55420.03500.00230.10561.0891

15-1.4422-1.45360.03220.0139-0.26530.9550

161.23071.23530.04750.01510.27591.0113

171.77381.80210.13900.10160.72420.9917

18-1.6192-1.63860.05070.0280-0.37850.9353

191.77541.80380.03860.02530.36130.8877

200.49030.48760.03730.00190.09601.0972

210.04520.04480.06600.00000.01191.1503

220.95790.95740.07180.01420.26631.0838

23-0.7027-0.70010.03280.0033-0.12891.0724

24-0.9544-0.95370.13510.0285-0.37701.1638

25-1.1530-1.15580.07000.0200-0.31721.0499

26-0.2258-0.22430.06410.0007-0.05871.1440

27-1.2927-1.29900.11130.0418-0.45971.0716

28-0.0111-0.01110.08630.0000-0.00341.1760

29-0.8828-0.88140.08020.0136-0.26031.1047

30-0.5375-0.53480.04220.0025-0.11231.0990

31-0.8616-0.86000.12030.0203-0.31811.1582

32-0.2927-0.29080.08630.0016-0.08941.1689

33-1.0449-1.04560.01700.0038-0.13751.0105

34-1.0457-1.04640.03950.0090-0.21231.0341

35-0.5616-0.55880.03970.0026-0.11371.0941

36-0.6137-0.61100.05180.0041-0.14291.1032

370.05220.05180.06220.00000.01341.1456

38-0.4802-0.47760.04890.0024-0.10831.1114

390.66970.66700.04200.00390.13971.0863

401.25821.26360.01720.00560.16740.9753

412.55562.66460.02540.03400.43010.6757

421.92191.96050.03820.02930.39080.8520

43-0.3035-0.30150.06710.0013-0.08091.1443

44-0.1756-0.17430.07920.0005-0.05111.1644

Regression Diagnostics Section

StandardizedHat

RowResidualRStudentDiagonalCook's DDffitsCovRatio

45-0.1471-0.14610.15390.0008-0.06231.2681

46-0.3632-0.36100.02490.0007-0.05761.0916

47-0.6405-0.63780.02130.0018-0.09421.0662

480.46940.46680.06600.00310.12411.1326

491.39781.40760.02410.00960.22110.9558

50-1.4911-1.50450.03030.0139-0.26590.9430

51-1.1443-1.14690.17240.0546-0.52351.1815

52-0.1147-0.11390.09320.0003-0.03651.1839

530.70050.69790.05280.00550.16481.0953

540.22130.21980.08290.00090.06611.1676

55-0.7181-0.71560.07290.0081-0.20071.1170

560.69760.69500.04120.00420.14411.0824

570.53750.53480.05430.00330.12811.1130

580.58940.58660.06980.00520.16061.1268

590.05510.05470.10570.00010.01881.2014

60-0.8651-0.86350.07960.0129-0.25391.1064

610.82050.81850.02750.00380.13751.0528

620.36320.36090.01890.00050.05011.0851

63-0.4117-0.40920.02830.0010-0.06991.0926

640.10580.10500.09200.00020.03341.1826

65-1.3756-1.38450.02610.0101-0.22660.9621

661.27801.28390.03140.01060.23120.9859

67-1.1546-1.15740.02900.0080-0.20001.0052

68-2.5116-2.61410.02860.0372-0.44870.6899

69-0.0746-0.07400.06310.0001-0.01921.1465

700.40750.40510.16830.00670.18221.2769

710.77320.77090.14740.02070.32061.2075

721.09501.09660.03430.00850.20671.0207

730.92630.92530.05870.01070.23111.0734

740.95500.95440.09100.01830.30201.1072

750.24200.24030.10750.00140.08341.1990

Plots Section

Appendix D

Final Multiple Regression Model

Run Summary Section

ParameterValueParameterValue

Dependent VariableearningspercentRows Processed75

Number Ind. Variables4Rows Filtered Out0

Weight VariableNoneRows with X's Missing0

R20.5968Rows with Weight Missing0

Adj R20.5738Rows with Y Missing0

Coefficient of Variation0.2995Rows Used in Estimation75

Mean Square Error61.08409Sum of Weights75.000

Square Root of MSE7.815631Completion StatusNormal Completion

Ave Abs Pct Error47.764

Regression Equation Section

RegressionStandardT-ValueRejectPower

IndependentCoefficientErrorto test ProbH0 atof Test

Variableb(i)Sb(i)H0:B(i)=0Level5%?at 5%

Intercept51.27132.873517.8430.0000Yes1.0000

ftturn-0.13030.0320-4.0680.0001Yes0.9799

inverse_sold-82079.578032760.1107-2.5050.0146Yes0.6953

lotdampercar-11.47021.7749-6.4630.0000Yes1.0000

oshapercar-1.15250.3938-2.9270.0046Yes0.8229

Estimated Model

51.2712784440518-.130345474537923*ftturn-82079.5780151717*inverse_sold-11.4702106246791*lotdampercar-1.15251248433065*oshapercar

Regression Coefficient Section

IndependentRegressionStandardLowerUpperStandardized

VariableCoefficientError95% C.L.95% C.L.Coefficient

Intercept51.27132.873545.540257.00240.0000

ftturn-0.13030.0320-0.1943-0.0664-0.3127

inverse_sold-82079.578032760.1107-147417.5586-16741.5975-0.2085

lotdampercar-11.47021.7749-15.0101-7.9303-0.5118

oshapercar-1.15250.3938-1.9379-0.3672-0.2524

Note: The T-Value used to calculate these confidence limits was 1.994.

Analysis of Variance Section

Sum ofMeanProbPower

SourceDFR2SquaresSquareF-RatioLevel(5%)

Intercept151068.7551068.75

Model40.59686329.7551582.43925.9060.00001.0000

Error700.40324275.88661.08409

Total(Adjusted)741.000010605.64143.3195

Normality Tests Section

TestTestProbReject H0

NameValueLevelAt Alpha = 20%?

Shapiro Wilk0.99060.858303No

Anderson Darling0.22020.834898No

D'Agostino Skewness0.37910.704620No

D'Agostino Kurtosis0.22960.818433No

D'Agostino Omnibus0.19640.906464No

Multicollinearity Section

VarianceR2Diagonal

IndependentInflationVersusof X'X

VariableFactorOther I.V.'sToleranceInverse

ftturn1.02610.02540.97461.680963E-05

inverse_sold1.20210.16810.83191.756963E+07

lotdampercar1.08880.08160.91845.157117E-02

oshapercar1.29160.22580.77422.538321E-03

Predicted Values with Confidence Limits of Means

Standard95% Lower95% Upper

ActualPredictedError ofConf. LimitConf. Limit

Row earningspercent earningspercent Predicted of Mean of Mean

119.95630.1121.31127.49832.726

237.44032.4151.53229.36135.470

342.09328.4631.33025.81031.116

426.88426.2001.49923.21129.189

521.18124.5072.02320.47328.541

635.65338.8431.63635.58042.106

720.09116.2632.69210.89521.632

836.96529.3971.43826.52932.265

937.70532.6431.32130.00935.277

1016.36724.4261.74020.95627.897

111.91210.6963.6053.50717.886

1230.00326.0231.65022.73329.314

1327.03125.1992.55920.09630.302

1436.27332.4471.48529.48635.408

1515.57925.8191.47222.88428.755

1628.82520.0001.72616.55723.442

1719.6928.5942.6843.24213.947

1816.36525.5892.45720.69030.488

1942.30829.1761.59325.99832.354

2036.33432.7591.32130.12535.393

2126.96926.9491.77323.41330.484

2242.74835.4321.85931.72439.140

2325.80431.6061.23629.14134.071

24-4.0724.9902.711-0.41610.397

2514.51024.5562.06920.43028.683

2625.52726.6871.57623.54429.831

2713.25124.9722.76719.45430.490

2841.95743.1042.32538.46847.741

2929.69136.8672.03132.81640.918

3025.86130.5711.47527.62933.513

310.6447.0602.7111.65212.467

3234.22435.2331.47732.28838.178

3321.55530.7971.10228.59932.995

3421.53230.0931.46327.17433.011

3527.23331.8551.40929.04534.665

3623.74527.7571.78424.19931.315

3734.28833.8171.85130.12637.508

3826.53229.4971.60726.29232.701

3923.35219.6051.43016.75222.458

4033.50924.6341.13922.36326.906

4140.03121.0511.40018.25823.845

4236.72318.3462.21213.93322.758

4317.85120.1442.00816.13924.149

Predicted Values with Confidence Limits of Means

Standard95% Lower95% Upper

ActualPredictedError ofConf. LimitConf. Limit

Row earningspercent earningspercent Predicted of Mean of Mean

4422.24524.0112.20419.61628.406

45-4.072-1.2393.077-7.3764.898

4629.12332.9381.26530.41435.462

4725.80431.7221.20329.32334.121

4827.51723.8571.98919.88927.824

4932.30722.4601.17920.10824.812

5019.95632.1251.23329.66734.583

51-10.387-7.8504.289-16.4040.705

5214.51015.2792.38010.53220.026

5339.92135.2461.78131.69438.799

5441.95741.3422.22736.90145.784

5516.36721.7951.66118.48225.109

5639.92135.5921.66132.27938.905

5732.00428.8871.89825.10232.671

5827.51723.5312.08519.37427.689

5922.24520.9212.52215.89225.951

6010.13115.2932.32110.66419.922

6137.28531.4471.33528.78434.110

6226.75725.0561.06922.92527.187

6329.12332.8791.27830.33135.427

6434.13828.7783.12322.54935.007

6515.70428.1531.40925.34330.963

6641.09832.0151.43329.15734.874

6721.55531.4351.19329.05633.813

6811.64831.9631.23529.50034.427

6923.93721.7592.29017.19126.327

7013.47212.7122.9426.84418.580

7121.78417.6593.09311.49123.827

7242.47434.4061.47531.46437.347

7340.79028.6663.06122.56134.771

7433.56826.9022.36122.19331.612

7544.56242.1412.43537.28446.998

Predicted Values with Prediction Limits of Individuals

Standard95% Lower95% Upper

ActualPredictedError ofPred. LimitPred. Limit

Row earningspercent earningspercent Predicted of Individual of Individual

119.95630.1127.92514.30745.918

237.44032.4157.96416.53148.300

342.09328.4637.92812.65144.275

426.88426.2007.95810.32842.072

521.18124.5078.0738.40540.608

635.65338.8437.98522.91754.769

720.09116.2638.266-0.22332.750

836.96529.3977.94713.54845.246

937.70532.6437.92616.83448.452

1016.36724.4268.0078.45740.396

111.91210.6968.607-6.47027.862

1230.00326.0237.98810.09241.955

1327.03125.1998.2248.79741.601

1436.27332.4477.95516.58048.313

1515.57925.8197.9539.95841.681

1628.82520.0008.0044.03635.963

1719.6928.5948.264-7.88725.076

1816.36525.5898.1939.24941.929

1942.30829.1767.97613.26745.084

2036.33432.7597.92616.95048.568

2126.96926.9498.01410.96542.932

2242.74835.4328.03419.40951.455

2325.80431.6067.91315.82547.388

24-4.0724.9908.272-11.50821.489

2514.51024.5568.0858.43240.681

2625.52726.6877.97310.78642.589

2713.25124.9728.2918.43641.508

2841.95743.1048.15426.84159.367

2929.69136.8678.07520.76152.972

3025.86130.5717.95414.70846.434

310.6447.0608.273-9.44023.559

3234.22435.2337.95419.37051.097

3321.55530.7977.89315.05546.539

3421.53230.0937.95114.23445.951

3527.23331.8557.94216.01647.694

3623.74527.7578.01711.76843.746

3734.28833.8178.03217.79849.836

3826.53229.4977.97913.58345.411

3923.35219.6057.9453.75835.452

4033.50924.6347.8988.88240.387

4140.03121.0517.9405.21536.887

4236.72318.3468.1232.14534.546

4317.85120.1448.0694.05036.238

Predicted Values with Prediction Limits of Individuals

Standard95% Lower95% Upper

ActualPredictedError ofPred. LimitPred. Limit

Row earningspercent earningspercent Predicted of Individual of Individual

4422.24524.0118.1207.81540.206

45-4.072-1.2398.400-17.99215.513

4629.12332.9387.91717.14748.729

4725.80431.7227.90815.95147.494

4827.51723.8578.0657.77239.941

4932.30722.4607.9046.69638.224

5019.95632.1257.91216.34547.905

51-10.387-7.8508.915-25.6309.931

5214.51015.2798.170-1.01531.573

5339.92135.2468.01619.25951.234

5441.95741.3428.12725.13457.550

5516.36721.7957.9905.85937.731

5639.92135.5927.99019.65651.528

5732.00428.8878.04312.84644.927

5827.51723.5318.0897.39939.664

5922.24520.9218.2124.54237.301

6010.13115.2938.153-0.96831.553

6137.28531.4477.92915.63447.261

6226.75725.0567.8889.32340.789

6329.12332.8797.91917.08448.673

6434.13828.7788.41611.99245.564

6515.70428.1537.94212.31443.992

6641.09832.0157.94616.16847.863

6721.55531.4357.90615.66647.203

6811.64831.9637.91316.18247.745

6923.93721.7598.1445.51538.002

7013.47212.7128.351-3.94429.368

7121.78417.6598.4050.89534.423

7242.47434.4067.95418.54350.269

7340.79028.6668.39411.92545.407

7433.56826.9028.16510.61943.186

7544.56242.1418.18625.81458.468

Residual Report

AbsoluteSqrt(MSE)

ActualPredictedPercentWithout

Row earningspercent earningspercent ResidualErrorThis Row

119.95630.112-10.15750.8967.774

237.44032.4155.02513.4207.848

342.09328.46313.62932.3807.694

426.88426.2000.6832.5427.872

521.18124.507-3.32615.7037.861

635.65338.843-3.1908.9487.862

720.09116.2633.82719.0517.857

836.96529.3977.56820.4737.817

937.70532.6435.06213.4257.848

1016.36724.426-8.05949.2407.809

111.91210.696-8.784459.4817.781

1230.00326.0233.98013.2647.857

1327.03125.1991.8316.7767.869

1436.27332.4473.82610.5487.858

1515.57925.819-10.24165.7357.771

1628.82520.0008.82630.6177.796

1719.6928.59411.09756.3557.742

1816.36525.589-9.22456.3677.785

1942.30829.17613.13231.0407.705

2036.33432.7593.5759.8407.860

2126.96926.9490.0200.0747.872

2242.74835.4327.31617.1147.820

2325.80431.606-5.80222.4857.840

24-4.0724.990-9.062222.5617.786

2514.51024.556-10.04769.2437.772

2625.52726.687-1.1614.5487.871

2713.25124.972-11.72188.4557.726

2841.95743.104-1.1472.7347.871

2929.69136.867-7.17624.1707.821

3025.86130.571-4.71018.2127.851

310.6447.060-6.415995.5437.829

3234.22435.233-1.0092.9487.871

3321.55530.797-9.24242.8787.791

3421.53230.093-8.56139.7597.802

3527.23331.855-4.62216.9737.852

3623.74527.757-4.01216.8977.856

3734.28833.8170.4711.3747.872

3826.53229.497-2.96411.1737.864

3923.35219.6053.74616.0447.859

4033.50924.6348.87526.4847.798

4140.03121.05118.98047.4137.522

4236.72318.34618.37750.0437.527

4317.85120.144-2.29312.8457.867

Residual Report

AbsoluteSqrt(MSE)

ActualPredictedPercentWithout

Row earningspercent earningspercent ResidualErrorThis Row

4422.24524.011-1.7667.9387.869

45-4.072-1.239-2.83269.5607.863

4629.12332.938-3.81413.0977.858

4725.80431.722-5.91822.9367.839

4827.51723.8573.66113.3037.859

4932.30722.4609.84730.4797.780

5019.95632.125-12.16960.9827.731

51-10.387-7.850-2.53724.4267.864

5214.51015.279-0.7695.3037.871

5339.92135.2464.67511.7107.851

5441.95741.3420.6151.4667.872

5516.36721.795-5.42833.1637.844

5639.92135.5924.32910.8447.854

5732.00428.8873.1179.7417.863

5827.51723.5313.98614.4847.856

5922.24520.9211.3245.9507.870

6010.13115.293-5.16250.9587.845

6137.28531.4475.83815.6587.840

6226.75725.0561.7016.3587.869

6329.12332.879-3.75512.8947.859

6434.13828.7785.36015.7007.841

6515.70428.153-12.44979.2747.723

6641.09832.0159.08222.0997.793

6721.55531.435-9.88045.8367.780

6811.64831.963-20.315174.4017.472

6923.93721.7592.1789.0997.867

7013.47212.7120.7605.6397.871

7121.78417.6594.12518.9367.853

7242.47434.4068.06818.9967.810

7340.79028.66612.12429.7237.711

7433.56826.9026.66619.8577.827

7544.56242.1412.4215.4327.866

Regression Diagnostics Section

StandardizedHat

RowResidualRStudentDiagonalCook's DDffitsCovRatio

1-1.3182-1.32530.02810.0101-0.22540.9751

20.65560.65290.03840.00340.13051.0836

31.76971.79770.02900.01870.31050.8803

40.08910.08850.03680.00010.01731.1150

5-0.4406-0.43800.06700.0028-0.11731.1358

6-0.4174-0.41500.04380.0016-0.08881.1099

70.52160.51890.11860.00730.19041.1957

80.98510.98490.03380.00680.18431.0373

90.65710.65440.02860.00250.11221.0725

10-1.0577-1.05860.04960.0117-0.24181.0431

11-1.2667-1.27230.21270.0867-0.66141.2155

120.52090.51820.04460.00250.11191.1031

130.24800.24630.10720.00150.08531.1983

140.49860.49590.03610.00190.09601.0952

15-1.3342-1.34180.03550.0131-0.25730.9795

161.15781.16070.04880.01370.26281.0256

171.51181.52610.11790.06110.55801.0319

18-1.2432-1.24820.09880.0339-0.41331.0664

191.71631.74100.04160.02550.36250.9043

200.46410.46150.02850.00130.07911.0893

210.00260.00260.05140.00000.00061.1329

220.96370.96320.05660.01110.23591.0655

23-0.7518-0.74950.02500.0029-0.12001.0584

24-1.2362-1.24100.12030.0418-0.45891.0939

25-1.3330-1.34060.07010.0268-0.36811.0162

26-0.1517-0.15060.04070.0002-0.03101.1183

27-1.6035-1.62210.12530.0737-0.61401.0189

28-0.1537-0.15260.08850.0005-0.04761.1769

29-0.9509-0.95020.06750.0131-0.25571.0799

30-0.6136-0.61090.03560.0028-0.11741.0846

31-0.8752-0.87370.12040.0210-0.32321.1562

32-0.1315-0.13050.03570.0001-0.02511.1130

33-1.1945-1.19820.01990.0058-0.17060.9891

34-1.1151-1.11700.03510.0090-0.21291.0182

35-0.6013-0.59850.03250.0024-0.10971.0823

36-0.5273-0.52450.05210.0031-0.12301.1113

370.06200.06160.05610.00000.01501.1381

38-0.3876-0.38520.04230.0013-0.08091.1100

390.48760.48490.03350.00160.09031.0931

401.14781.15040.02120.00570.16950.9984

412.46842.56490.03210.04040.46720.7041

422.45162.54580.08010.10470.75130.7457

43-0.3036-0.30160.06600.0013-0.08021.1430

44-0.2355-0.23390.07950.0010-0.06871.1628

Regression Diagnostics Section

StandardizedHat

RowResidualRStudentDiagonalCook's DDffitsCovRatio

45-0.3942-0.39180.15500.0057-0.16781.2577

46-0.4946-0.49190.02620.0013-0.08071.0844

47-0.7664-0.76410.02370.0028-0.11901.0553

480.48430.48160.06480.00320.12681.1299

491.27441.28020.02280.00760.19540.9778

50-1.5768-1.59400.02490.0127-0.25460.9197

51-0.3883-0.38590.30120.0130-0.25341.5212

52-0.1034-0.10260.09270.0002-0.03281.1835

530.61430.61150.05190.00410.14311.1032

540.08210.08150.08120.00010.02421.1690

55-0.7107-0.70820.04520.0048-0.15411.0854

560.56690.56410.04520.00300.12271.0998

570.41120.40870.05900.00210.10231.1282

580.52910.52640.07110.00430.14571.1339

590.17890.17770.10410.00070.06061.1967

60-0.6917-0.68910.08820.0093-0.21431.1388

610.75810.75580.02920.00350.13101.0622

620.21970.21820.01870.00020.03011.0913

63-0.4870-0.48440.02670.0013-0.08031.0855

640.74810.74570.15970.02130.32511.2285

65-1.6194-1.63880.03250.0176-0.30040.9177

661.18211.18550.03360.00970.22111.0053

67-1.2791-1.28500.02330.0078-0.19840.9775

68-2.6323-2.75330.02500.0355-0.44060.6544

690.29150.28960.08590.00160.08881.1684

700.10490.10420.14170.00040.04231.2510

710.57470.57190.15660.01230.24641.2443

721.05121.05200.03560.00820.20221.0291

731.68591.70880.15340.10300.72731.0317

740.89470.89340.09130.01610.28321.1165

750.32590.32390.09710.00230.10621.1812

Plots Section