Petroleum Engineering 311
Reservoir Petrophysics
Homework 5 – Capillary Pressure
1 November 2000 — Due: Wednesday 8 November 2000
5.1Determination of Capillary Pressure Using the Centrifuge.
You are to determine the capillary pressure (pc) profiles for the centrifuge data given below.
Input Data:
Water-Oil System:
Properties
/ Core WO-1 / Core WO-2Core Length, in
/ 1.699 / 1.632Dry Weight of Core, gm / 46.476 / 45.314
Core Porosity, fraction / 0.1911 / 0.1752
Core Permeability, md / 290 / 266
Water (Brine) Density, gm/cc / 1.05 / 1.05
Oil (Kerosene) Density, gm/cc / 0.7891 / 0.7891
Interfacial Tension, dyne/cm / 25 / 25
Long radius, in / 6.1 / 6.1
Core WO-1 / Core WO-2
Saturated
Weight(gm) / Centrifuge
Speed
(RPM) /
Saturated
Weight(gm) / Centrifuge
Speed
(RPM)
50.761 / 0 / 49.333 / 0
50.738 / 476 / 49.297 / 476
50.477 / 975 / 49.041 / 975
50.328 / 1500 / 48.907 / 1500
50.232 / 2000 / 48.824 / 2000
50.159 / 2500 / 48.765 / 2500
50.101 / 3000 / 48.719 / 3000
50.012 / 4000 / 48.652 / 4000
Air-Oil System:
Properties
/ Core AO-1 / Core AO-2Core Length, in
/ 1.601 / 1.721Dry Weight of Core, gm / 44.205 / 47.423
Core Porosity, fraction / 0.1819 / 0.1846
Core Permeability, md / 242 / 275
Oil (Kerosene) Density, gm/cc / 0.7891 / 0.7891
Air Density, gm/cc / 0.00122 / 0.00122
Interfacial Tension, dyne/cm / 50 / 50
Long radius, in / 6.1 / 6.1
Core AO-1 / Core AO-2
Saturated
Weight(gm) / Centrifuge
Speed
(RPM) /
Saturated
Weight(gm) / Centrifuge
Speed
(RPM)
47.238 / 0 / 50.719 / 0
46.058 / 476 / 49.841 / 476
45.592 / 975 / 49.178 / 975
45.376 / 1500 / 48.795 / 1500
45.240 / 2000 / 48.532 / 2000
45.185 / 2500 / 48.472 / 2500
45.089 / 3000 / 48.353 / 3000
45.020 / 4000 / 48.293 / 4000
Petroleum Engineering 311
Reservoir Petrophysics
Homework 5 – Capillary Pressure
1 November 2000 — Due: Wednesday 8 November 2000
5.1(Continued)
Required:
5.1.aDetermine the "corrected" capillary pressure function using the capillary pressure-average saturation plot (pc versus Savg). Use an individual plot for each case.
5.1.bPlot capillary pressure versus wetting phase saturation on a single plot (pc versus S).
5.1.cConvert all capillary pressure data to the Leverett J-function, and plot all cases on single plot (J(S) versus S).
Governing Equations:
Capillary Pressure
where,
r1=r2-core length, ftw=Water density, gm/cc
=(w-o) or (o-a), gm/cco=Oil density, gm/cc
=(/30)xRPM, radians/seca=Air density, gm/cc
pc=Capillary pressure, psia
gc=Gravitational constant, 32.2 lbm-ft/lbf-sec2
Average Saturation
where,
Wt=Sat. Weight-Dry Weight, gmw=Water density, gm/cc
w=Water density, gm/cco=Oil density, gm/cc
=Avg. Water saturation, fractiona=Air density, gm/cc
=Avg. Oil saturation, fractionVp=Pore volume, cc
Saturation Correction (for centrifuge effects)
where,
pc=Capillary pressure, psia
=Average saturation, fraction
S=Corrected saturation, fraction
Petroleum Engineering 311
Reservoir Petrophysics
Homework 5 – Capillary Pressure
1 November 2000 — Due: Wednesday 8 November 2000
5.2Determination of Capillary Pressure Using Mercury Injection.
You are to determine the capillary pressure (pc) profile for the Mercury injection data given below.
Input Data:
Mercury-Air System:
Properties
/ Core Hg-1Core Length, in
/ 1.1695Core Diameter, in / 1.0050
Core Porosity, fraction / 0.2250
Core Permeability, md / 315
Mercury Density, gm/cc / 13.59
Air Density, gm/cc / 0.00122
Core Hg-1
Injected
MercuryVolume
(cc) / Cell
Pressure
(psia)
0.000 / 0.18*
0.053 / 1.00
0.082 / 2.00
0.108 / 3.00
0.143 / 4.00
0.194 / 5.00
0.414 / 6.00
1.313 / 7.00
1.723 / 8.00
1.932 / 9.00
2.067 / 10.00
2.154 / 11.00
2.232 / 12.00
2.279 / 13.00
2.319 / 14.00
2.357 / 15.00
2.487 / 25.00
2.627 / 30.00
2.705 / 40.00
2.780 / 50.00
2.868 / 75.00
2.944 / 100.00
3.020 / 150.00
3.075 / 200.00
3.142 / 300.00
3.192 / 400.00
3.224 / 500.00
3.261 / 600.00
3.288 / 700.00
3.308 / 800.00
3.310 / 900.00
3.350 / 1000.00
*Minimum pressure in system (i.e., the maximum "vacuum" drawn on the system).
Petroleum Engineering 311
Reservoir Petrophysics
Homework 5 – Capillary Pressure
1 November 2000 — Due: Wednesday 8 November 2000
5.2(Continued)
"Cell Expansion": (calibration equation valid for this case only)
Vexp = 0.017676(pc)0.338339
Required:
5.2.aDetermine the "corrected" air saturation (subtract the cell expansion from the injected mercury volume) and plot pc,Hg versus Sair on a Cartesian plot.
5.2.bConvert the pc,Hg — Sair capillary pressure data to the Leverett J-function, and add this trend to the cases from 5.1.c.
Governing Equations:
Air Saturation (Mercury-air system)
where,
VHg,inj=Injected Mercury volume, cc
VHg,inj,c=(VHg,inj-Vexp) Injected Mercury volume (corrected), cc
Vexp=Cell expansion volume, cc (from calibration equation)
Vp=Pore volume, cc
Sa=Air saturation, fraction
Petroleum Engineering 311
Reservoir Petrophysics
Homework 5 – Capillary Pressure
1 November 2000 — Due: Wednesday 8 November 2000
5.3Brooks-Corey Model for Representing Capillary Pressure
Using the capillary pressure saturation data obtained from Parts 5.1 and 5.2, you are to "fit" the Brooks-Corey pc model to each case.
Required:
5.3.aFor each pc data set you are to determine the pd, Swi, and parameters in the Brooks-Corey pc model using a statistical approach such as least squares. Be sure to explain ALL steps.
5.3.bFor each pc data set you are to determine the pd, Swi, and parameters in the Brooks-Corey pc model using the "type curve" approach given in the notes. The type curve and data grid plot are attached.
Governing Equations:
Brooks-Corey Capillary Pressure Model
where,
pc=Capillary pressure, psia
pd=Displacement (or threshold) pressure, psia
Sw=Wetting phase saturation, fraction
Swi=Irreducible wetting phase saturation, fraction
=Brooks-Corey exponent, dimensionless