Online Resource 3 Details of the models and designs
Article title / Improving the Estimation of Parameter Uncertainty Distributions in Nonlinear Mixed Effects Models using Sampling Importance ResamplingJournal name / Journal of Pharmacokinetics and Pharmacodynamics
Author names / Anne-Gaëlle Dosne1, Martin Bergstrand1, Kajsa Harling1, Mats O Karlsson1
Author affiliations / 1Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24Uppsala, Sweden
Corresponding author / Anne-Gaëlle Dosne:
Simulation example 1: PK 1CMT / Simulation example 2: PD Emax
Model
CL (first order elimination) / 1 / E0 / 10
V / 1 / EMAX / 100
IIV CL / 30% / ED50 / 5
IIV V / 30% / IIV E0 / 30%
RUV, additive on log scale / 20% / IIV ED50 / 30%
RUV, proportional / 10%
Study design
Single dose of 100mass units
Sampling after 0.25, 0.5, 1 and 2 time units. / Multiple doses of 0, 2.5, 5, 15 and 2 dose units.
ID – obs/ID: 20 - 4 / ID – obs/ID: 20 - 4
ID – obs/ID: 50 - 4 / ID – obs/ID: 50 - 4
ID – obs/ID: 200 - 4 / ID – obs/ID: 200 – 4
Real data example 1:
Moxonidine / Real data example 2:
Pefloxacin / Real data example 3:
Phenobarbital
Model
oral PK 1-CMT with lag-time first order absorption and elimination
11 parameters:
CL, V, KA, TLAG,
IIV CL, IIV V, IIV CL-V, IIV KA,
IOV CL, IOV KA,
additive RUV on log scale / i.v. PK 1-CMT first order elimination
10 parameters:
CL, V,
IIV CL, IIV V, IIV CL-V,
covariate effect on CL (CLCR)
IOV CL, IOV V, IOV CL-V
proportional RUV / i.v. PK 1-CMT first order elimination
7 parameters:
CL, V,
IIV CL, IIV V
weight effects on CL and V (EXP)
additive RUV
Study design
multiple doses
2 occasions / multiple doses
3 occasions / multiple doses
1 occasion
ID – Nobs (obs/ID): 74 – 1021 (14) / ID – Nobs (obs/ID): 74 – 337 (5) / ID – Nobs (obs/ID): 59 – 155 (3)
CL: clearance, V: volume of distribution, TLAG: lag-time, KA: absorption rate, IIV: inter-individual variability (exponential, expressed as coefficient of variation in %), IOV: inter-occasion variability (exponential, expressed as coefficient of variation in %), RUV: residual unexplained variability (expressed as coefficient of variation in %), ID: individuals, obs/ID: number of observations per individual, Nobs: total number of observations, CMT: compartment, i.v.:intravenous.
NONMEM control file for the moxonidine example
$PROBLEM MOXONIDINE PK, FINAL ESTIMATES, ALL DATA
$INPUT ID VISI XAT2=DROP DGRP=DROP DOSE=DROP FLAG=DROP ONO=DROP
XIME=DROP DVO=DROP NEUY SCR AGE SEX NYHA WT
DROP ACE DIG DIU NUMB=DROP TAD TIME VIDD=DROP CRCL AMT SS
II DROP CMT=DROP CONO=DROP DV EVID=DROP OVID=DROP
DROP SHR2=DROP NYHDI=DROP
$DATA mx20.csv IGNORE=#
$SUBROUTINE ADVAN2 TRANS1
$PK
;------OCCASIONS------
VIS3 = 0
IF(VISI.EQ.3) VIS3 = 1
VIS8 = 0
IF(VISI.EQ.8) VIS8 = 1
;------IOV------
KPCL = VIS3*ETA(4)+VIS8*ETA(5)
KPKA = VIS3*ETA(6)+VIS8*ETA(7)
;------PK model ------
TVCL = THETA(1)
TVV = THETA(2)
CL = TVCL*EXP(ETA(1)+KPCL)
V = TVV*EXP(ETA(2))
KA = THETA(3)*EXP(ETA(3)+KPKA)
ALAG1 = THETA(4)
K = CL/V
S2 = V
$ERROR
IPRED = LOG(.025)
IF(F.GT.0) IPRED = LOG(F)
W = SQRT(SIGMA(1,1))
IRES = IPRED-DV
IWRES = IRES/W
Y = IPRED+EPS(1)
$THETA (0,26.6815) ; CL
$THETA (0,110.275) ; V
$THETA (0,4.49465) ; KA
$THETA (0,0.240122,0.25) ; TLAG
$OMEGA BLOCK(2) 0.0444 ; IIV CL
0.027 ; COV CL-V
0.0241 ; IIV V
$OMEGA BLOCK(1) 3.0 ; IIV KA
$OMEGA BLOCK(1) 0.0165 ; IOV CL
$OMEGA BLOCK(1) SAME ; IOV CL
$OMEGA BLOCK(1) 0.495 ; IOV KA
$OMEGA BLOCK(1) SAME ; IOV KA
$SIGMA 0.1
$ESTIMATION METHOD=1 MAXEVALS=9999
$COV
NONMEM control file for the pefloxacin example
$PROBLEM pefloxacin data intraindividual modeling
$INPUT ID OCC DV TIME AMT RATE ADDL II WT AGE CLCR SEX CEN BIL SBP
$DATA pefdata.csv IGN=@
$SUBROUTINE ADVAN=ADVAN1
$PK
OCC1=0
OCC2=0
OCC3=0
IF (OCC.EQ.0) OCC1=1
IF (OCC.EQ.1) OCC2=1
IF (OCC.EQ.2) OCC3=1
IF(NEWIND.NE.2) BCLCR=CLCR
IF(NEWIND.NE.2) BWT =WT
DCLCR=CLCR-BCLCR
DWT =WT-BWT
TVCL=THETA(1)*(1+THETA(4)*(CLCR-100))
CL=TVCL*EXP(ETA(1)+OCC1*ETA(3)+OCC2*ETA(5)+OCC3*ETA(7))
TVV=THETA(2)*(WT/70)
V =TVV *EXP(ETA(2)+OCC1*ETA(4)+OCC2*ETA(6)+OCC3*ETA(8))
S1=V
K=CL/V
$ERROR
IPRED=F
W =THETA(3)*IPRED
IWRES=(DV-IPRED)/W
Y=IPRED + W*ERR(1)
$THETA (0,3.42508) ; 1 TVCL
$THETA (0,66.1332) ; 2 TVV
$THETA (0,0.142616) ; 3 RV
$THETA (0,0.0041804,.0099) ; 4 CRCL on CL
$OMEGA BLOCK(2)
0.101439
0.0561715 0.054985
$OMEGA BLOCK(2)
0.136314
-0.0122524 0.00811249
$OMEGA BLOCK(2) SAME
$OMEGA BLOCK(2) SAME
$SIGMA 1 FIX
$ESTIMATION SIG=3 MAXEVAL=3000 PRINT=10 MSFO=msf1 METHOD=1 INTER
$COVARIANCE
NONMEM control file for the phenobarbital example
$PROBLEM PHENOBARB additive model
;$ABBREVIATED COMRES=2
$INPUT ID TIME AMT WT APGR DV
$DATA PHENO.dta IGNORE=@
$SUBROUTINE ADVAN1 TRANS2
$PK
TVCL = THETA(1)*(WT/3)**THETA(4) ; typical value of CL
TVV = THETA(2)*(WT/3)**THETA(5)
CL = TVCL*EXP(ETA(1)) ; individual value of CL
V = TVV*EXP(ETA(2)) ; individual value of V
S1 = V
$ERROR
IPRED = F ; individual predicion
IRES = DV - F ; individual residual
W = THETA(3) ; additive residual error
IF(W.EQ.0) W = 1
IWRES = IRES/W ; individual weighed residual
;IF(ICALL.EQ.4) THEN
; Y=DV
;ELSE
Y = IPRED+ERR(1)*W
;ENDIF
$THETA (0,.005)
$THETA (0,1.45)
$THETA (0, 5)
$THETA (0, .75)
$THETA (0, 1)
$OMEGA 0.228 ; variance for ETA(1), initial estimate
$OMEGA 0.146 ; variance for ETA(2), initial estimate
$SIGMA 1 FIX ; initial estimate
$ESTIMATION METHOD=1 MAXEVAL=9999 ; FOCE calculation method
$COV