JAVA RING

BY

Khushboo Baghadiya 08L51A0514

Manal Omer Bin Hamza 08L51A0517

Nargis Roohi 08L51A0518

Summayya Roohi 08L51A0544

Shadan Women’s College of Engineering and Technology

Khairatabad

INDEX…

1. INTRODUCTION

2. HISTORY

3. COMPONENTS

3.1 IBUTTON

3.2 BLUE DOT RECEPTOR

4. WORKING

5. APPLICATION

6. SECURITY

7. ADVANTAGES & DISADVANTAGES

8. CONCLUSION

ABSTRACTS

Password is a common mean of implementing security. Dallas Semiconductor has developed a new Java-based, computerized ring that will automatically unlock doors and log on to computers. This java based technique overcomes the deficiencies of the secret password. A Java Ring is a finger ring that contains a small microprocessor which runs JVM and is preloaded with applets. The jewel of Java Ring is Java iButton, which is a microchip enclosed in a secure package.

INTRODUCTION

It seems that everything we access today is under lock and key. Even the devices we use are protected by passwords. It can be frustrating trying to keep with all of the passwords and keys needed to access any door or computer program. Dallas Semiconductor is developing a new Java-based, computerized ring that will automatically unlock doors and log on to computers. This mobile computer can become even more secure. You can keep the iButton with you wherever you go by wearing it as a closely guarded accessory - a watch, a key chain, a wallet, a ring - something you have spend your entire life practicing how not to lose. Here are a few reasons why you might want to wear the iButton in the accessory that best fits your life style :
It is a safe place to keep the private keys to conduct transactions.
It overcomes the deficiencies of the secret password.
You eliminate keystroke with a quick, intentional press of the Blue Dot.
You keep your computer at hand versus lugging your everywhere you roam
You become part of the network economy
This steel-bound credential stands up to the hard knocks of everyday wear, including sessions in the swimming pool

What is Java Ring?

A Java Ring is a finger ring that contains a small microprocessor with built-in capabilities for the user, a sort of smart card that is wearable on a finger. Sun Microsystem's Java Ring was introduced at their JavaOne Conference in 1998 and, instead of a gemstone, contained an inexpensive microprocessor in a stainless-steel iButton running a Java virtual machine and preloaded with applets (little application programs). The rings were built by Dallas Semiconductor.
Although Java Rings aren't widely used yet, such rings or similar devices could have a number of real-world applications, such as starting your car and having all your vehicle's components (such as the seat, mirrors, and radio selections) automatically adjust to your preferences.
The Java Ring is an extremely secure Java-powered electronic token with a continuously running, unalterable real-time clock and rugged packaging, suitable for many applications. The jewel of the Java Ring is the Java iButton -- a one-million transistor, single chip trusted microcomputer with a powerful Java Virtual Machine (JVM) housed in a rugged and secure stainless-steel case.

HISTORICAL BACKGROUND

In the summer of 1989, Dallas Semiconductor Corp. produced the first stainless-steel-encapsulated memory devices utilising the Dallas Semiconductor 1-Wire communication protocol. By 1990, this protocol had been refined and employed in a variety of self contained memory devices. Originally called “touch memory” devices, they were later renamed “iButtons With one of these rings a user could communicate with the computers at the Hackers' Lab, help build a large fractal image at the show, or even get a cup of his or her favorite coffee.
Built by Dallas Semiconductor, the durable, wearable Java Ring is practically indestructible but not heavy or clumsy.
At the conference, the Java Rings were preloaded with applets that could communicate with corresponding host applications on various networked systems installed at the show.
The first time an attendee snapped the ring's iButton into a ring reader attached to a workstation, an applet on the ring communicated with the host application on the system. The applet in turn downloaded the user's personal information from the conference registration system and allowed the user to select their preferred type of coffee (a process they called "personalizing" the ring). From there, the user could walk over to a "coffee factory," snap the ring into another reader, and the robotic coffee machine would make the brew based on the user's preference stored in the ring.

i-BUTTONS

An iButton is a microchip similar to those used in a smart card but housed in a round stainless steel button of 17.35mm x 3.1mm - 5.89mm in size (depending on the function).
On top of these features, the ring provides a rugged environment, wear-tested for 10-year durability. You can drop it on the floor, step on it, forget to take it off while swimming and the data remains safe inside. Today iButtons are primarily used for authentication and auditing types of applications. Since they can store data, have a clock for time-stamping, and support for encryption and authentication, they are ideal for audit trails.
Every iButton product is manufactured with a unique 8-byte serial number and carries a guarantee that no two parts will ever have the same number. In addition to these, there are iButtons with password-protected file areas for security applications, iButtons that count the number of times they have been rewritten for securing financial transactions, iButtons with temperature sensors (for food storage and transport), iButtons with continuously running date/time clocks, and even iButtons containing powerful microprocessors. There are iButtons that have an electronic ID (for physical access to buildings); and store e-cash (for purchases both in stores and via the web).
iButtons have an advantage over conventional smart cards in term of durability and longevity.

BLUE DOT RECEPTOR

Information is transferred between your iButton and a PC with a momentary contact, at up to 142kbps. You simply touch your iButton to a Blue Dot receptor or other iButton probe, which is connected to a PC. The Blue Dot receptor is cabled to a 1-Wire adapter that is attached to the PCs serial or parallel port.
The DS1402 Blue Dot receptor provides a convenient pipeline into the PC for iButton-to-PC communication. The receptor's cable connects to either a serial or parallel port, according to which adapter you choose. The receptor itself easily affixes to any accessible spot on the front of the PC. The user can elect a quick information transfer with a momentary touch of the iButton to the Blue Dot. Alternately, the iButton can be snapped into the Blue Dot and remain there, allowing hands-free operation.
Each receptor contains two Blue Dots to accommodate instances where multiple iButtons are required to complete a transaction. For example, a company's policy may require both an employee and a supervisor to authenticate access to sensitive information stored on a network server.
Wire Interface
By simply touching each of the two contacts we can communicate to any of the iButtons by using 1-Wire protocol. The 1-Wire interface has two communication speeds. Standard mode are at 16kbps and overdrive mode at 12kbps. 1-wire protocol is used for communication between PC and the blue dot receptor over the 1-wire Network. 1-Wire Network includes a system with a controlling software, wiring and connectors and iButtons.
APPLICATIONS OF JAVA RING
Today iButtons are primarily used for authentication and auditing types of applications. Since they can store data, have a clock for time-stamping, and support for encryption and authentication, they are ideal for audit trails.
tacking Snail Mail :
For example, the U.S. Post Office uses iButtons affixed to the inside door of every blue postal box standing on curbs across the country so it can track carrier, pick-up location, date, and time of mail retrieval.
Sturdy Data Trackers :
Since their introduction, iButtons have been deployed as rugged portable data carriers, often in harsh environmental conditions. They are worn as earrings by cows in Canada to hold vaccination records, and they are used by agricultural workers in many areas as sturdy substitutes for timecards.
facility comprised a multitiered, Enterprise-like application.
JAVA RING - THE TIDAL WAVE OF FUTURE

Cute trick or tidal wave of the future Just think of the possibilities. A Java Ring (and potentially any of several personal devices, such as a key chain or watch) contains a processor compatible with Java Card 2.0, a Java Virtual Machine, sizeable RAM and ROM memory capacity, and a real-time clock. Most importantly, the iButton supports multiple applets that can be loaded dynamically. Freed from the usual constraints of connectivity, this ring lets you roam the world and bring with you your personal preferences--your computing environment, your medical information, your choices of colors or coffee.
For example, imagine starting your car with your ring: the seats and mirrors adjust automatically, your favorite radio station begins to play, and when you pull out into the street, the car "knows" your driving habits. A Java Ring--and any related device that houses an iButton with a Java Virtual Machine--goes beyond a traditional smart card by providing real memory, more power, and a capacity for dynamic programming. On top of these features, the ring provides a rugged environment, wear-tested for 10-year durability. You can drop it on the floor, step on it, forget to take it off while swimming, and the "knuckletop" remains safe inside.

ADVANTAGES

- very easy and convenient way for users.

-More secure than using passwords.

-Portable.

-Ruggedness.

-Wearable.

-Provides authentication to users which is crucial for many applications.

-Easier for administrator to maintain the security infrastructure.

-Provides real memory, more power, and a capacity for dynamic programming

DISADVANTAGES

-Parents and teachers will have less control over children and students

-Loss of privacy

CONCLUSION

Dallas Semiconductor has produced more than 20 million physically-secure memories and computers with hard-shell packaging optimized for personal possession. The Java iButton, therefore, is simply the latest and most complex descendant of a long line of products that have proven themselves to be highly successful in the marketplace. With its stainless steel armor, it offers the most durable packaging for a class of products that likely will suffer heavy use and abuse as personal possessions. The iButton form factor permits attachment to a wide variety of personal accessories that includes rings, watchbands, keyfobs, wallets, bracelets, and necklaces, so the user can select a variation that suits his or her lifestyle.
obile computing is beginning to break the chains that tie us to our desks, but many of today's mobile devices can still be a bit awkward to carry around. In the next age of computing, we will see an explosion of computer parts across our bodies, rather than across our desktops. Digital jewelry, designed to supplement the personal computer, will be the evolution in digital technology that makes computer elements entirely compatible with the human form.

REFERENCES

-

-

- http://people.cs.uchicago.edu