/ Weather, or Not!
Contributors: June Richards, Tim Bennett, Nancy Cotter, Kim Olsen

Lesson Activities

Teacher’s Notes:

  1. Prior to the teaching of the lesson, using weather information from http://www.wunderground.com/, the teacher should a select a period of time (approx. 7 days) of “interesting weather.” It would be great to have a variety of weather systems including a cold front. For example, this lesson featured the weather from January 26- February 1, 2014.
  1. The teacher should also select 8-10 cities that were affected (or not) by the weather. For example, this lesson featured a variety of cities like Chicago, Fargo, Kansas City, Nashville, New York City, Oklahoma City, Seattle, Atlanta, Austin, and North Platte. These were chosen because the cities were affected by cold fronts, warm fronts, and high and low pressure systems.
  1. The teacher should create a survey using Google Forms asking for the following information: names of students, name of city, date of observation, mean temperature (actual), average humidity, sea level pressure, wind speed, precipitation, events/sky condition. At the bottom of the survey, you will see a section called Confirmation page. Select the box, “Show link to submit another response.” To share this form with your students, you will use the blue button to “send form.” Copy the link and paste onto your website for students to access it.
  1. The students may now begin to collect data from http://www.wunderground.com/, the Weather Underground site. To do so, the students enter a location (the name of their selected city.) They will go to a page with weather data for that city. As they scroll down, they will find and click on View Calendar. Here they will find decades of archived weather data. (Note: the weather icon (sun, thunderstorm, snow) depicts the sky condition and some events. As they click on the date (hyper-linked numeral), this will lead them to the weather data for that day. Warning: Students might confuse the Actual Mean Temperature with the Average Mean Temperature. They want to get the actual temperatures, in the first column under Actual. Data collection may take an hour to complete.
  1. Google Docs will create a spreadsheet for the teacher to share the data with the students. In the sharing settings, “Anyone with the link” should be selected under Visibility options. Under Access, it should be Anyone (no sign in required) Can view. (You don’t want your students to be able to edit the data!)
  1. The teacher should organize/edit the data to group it by city and put it in chronological order. It is now ready to be shared with the students by copying and pasting the link.
  1. The teacher should make the animation of the weather map. To do this, go to http://www.wunderground.com/. Under the Maps & Radar tab, select WunderMap. Under Layers, select only Radar and U.S. Fronts. Click on the triangle to hide the Layers. (Note: Near Layers there is also a Legend with the different kinds of fronts and explanation of Radar colors.) Zoom out by clicking on continent or by using the zoom in/out tool. Next, click on the calendar icon in the lower left hand corner of the page. This will allow you to choose the dates of your animation. For example, select January 26, 2014 by clicking on the calendar or the drop-down options. Under Animation Duration, select the number (7) and change the increments to days. (Note: Increments can be hours, days, weeks, and even years!) To start the weather animation, press play (white triangle in blue box.)
  1. To share this animation with your students, click on Link & Share. Copy the link and paste it on a website for the students to access it.
  1. This lesson is designed to take place over a period of a few days. The data collection by students should be modeled by the teacher and should occur prior to the lesson below. Students should have some basic knowledge of what a cold or warm fronts are. Due to time, it is suggested to focus on temperature change in this lesson, specifically the effect of cold or warm fronts. The effects of high and low pressure systems or the cause of rain and thunderstorms can be explored using the lesson idea or explored by groups of students in expert groups as described in the extension lessons. Additionally, this lesson gives students opportunity to practice making claims and citing evidence to support their claims. If the students are proficient at this, the explore process can be streamlined with the teacher expecting the students to write claims and evidence based on the patterns they observe in their charts.
  2. This lesson opens the door for many possible extension activities. It is very important to keep the lesson as inquiry based as possible, so that the work is being done and the connections are being made by the students with the teacher facilitating. The primary website has dozens of possible uses and tons of material to use for similar activities.

ENGAGE
Teacher Does / Student Does
DAY 2--Teacher shows weather report/broadcast.
(This can be played from the beginning or could be cued up around 1:00 minute play to about 2:03.): http://www.youtube.com/watch?v=05_qs_6JWg0
Note: Showing this video to the entire group rather than allowing the students to view at their own computers is much more efficient and causes less confusion. Students may want to see the video more than once.
Have you seen weather reports like this before?
Teacher shows weather map with symbols.
What are these symbols and what kind of weather systems to do they represent?
After students pair/share, teacher charts their responses on the board, eliciting cold/warm front and what those mean. Teacher also lists questions for future research. / Students talk with partners or table group about the symbols for cold and warm fronts used on a weather map.
Students share responses with class and also present questions for the class to consider while continuing with the next steps of the lesson, the concepts and topics that they want to explore.
EXPLORE
Teacher Does / Student Does
DAY 1—Data Collection--First part of lesson (prior to the Engage):
1. Teacher introduces students to the Weather Underground website for data collection: http://www.wunderground.com/
Teacher models the data collection process. (5 minutes)
Warning - Some students may confuse average mean temperature in an area over time with the actual mean temperature for each day. / 1. Students log onto computers and choose a location (from a teacher directed list). They log onto http://www.wunderground.com/ to view their location’s data on given dates - temperature, pressure, humidity, and precipitation, wind speed, and events/sky condition (snow, rain, fog, thunderstorm, etc.) (5 minutes)
2. Teacher provides a link to the Google form for data entry and group collection. Students should double check each other to ensure accuracy before entering data onto the form. (15 minutes) / 2. Students enter their city’s data collected from Weather Underground website onto the Google form. (This activity will take the students about one hour to complete, and for some groups, up to one hour and 30 minutes SPED and slower groups.)
DAY 2--Next part of lesson (after the Engage):
1. Teacher asks: What causes the changes in the weather? What patterns do you see in the data? (Teacher models this process, looking at data displayed for the whole class to see. 5 minutes) / 1. Students log onto computers accessing compiled data and animated weather map. They should also have their materials including chart, construction paper map, and colored pencils. (3 minutes)
2. Let’s examine some data together. Let’s look at North Platte, Nebraska. What do you notice in the data? (They will see either snow or temp drop.) Let’s be systematic and put this information in a chart. The chart will not only record our information, but it will help to reveal patterns. (Teacher displays chart for all to see and records a change in the weather. For example, the temperature dropped from ___ degrees to ___ degrees.) / 2. Students look at data to find changes in weather.
3. What kind of weather system might’ve caused this? Write your prediction in your chart. (Ask students to share predictions. Teacher accepts all answers.) / 3. Students write in their chart, following the teacher’s model. They write and share their prediction of the cause of the weather change.
4. Now, let’s look at the video of the weather map showing North Platte. What caused the lower temperatures? (Cold front came in.) I wonder if that will always happen with a cold front. Let’s see if we can find it happening again. When looking for patterns, I always make a chart. That way I can gather my evidence and it makes looking for patterns easier. Based on my patterns, I can make a claim about what cold fronts do, or in another case, what causes temperatures to go up. / 4. Students watch animation video on their laptops and discuss reason for the change in their groups before sharing with the class. Then, they fill out their chart with the actual reason and cite evidence.
5. In your teams, look for some patterns or changes in the weather. Use the chart to keep track of what you find. Make your prediction of the cause and then look at the weather maps to find the possible cause. As you explore these patterns, begin to formulate claims. / 5. Students explore on their own, looking at data, charting the changes, predicting the causes, and watching the video to try to figure out the effect of air mass movement on the weather.
DAY 3
1. Teacher provides construction paper and map of USA for groups to use to share what they’ve found out with the class. (This writing and discussion will give students a chance to begin writing cause and effect statements or “claims” about weather systems and their effects.) / 1. Students use the map, colored pencils, and the information recorded in their charts to share what they found during this exploration. They draw the appropriate weather symbols on the map along with “claims and evidence,” or statements about how their predicted reasons resulted in changes in weather.
Use this map to visually share what you have found out about the causes of changes in the weather from at least two cities. / An actual student example of data supporting their claim or prediction: “In North Platte, on the 29th of January, the temperature rose from 9 degrees to 27 degrees. Just like we thought a warm front came by making the temperature warmer.”
Include the appropriate weather symbols and claims, statements showing cause and effect about the weather systems and the data. (The ability of the students and their experience with making claims and providing evidence will vary. Accept all formative claims or even just cause and effect statements. Students should be able to cite evidence that supports or does not support their claims.) / An actual student example of data not supporting claim or prediction: “ In Chicago, on the 29th of January the temperature rose from -3 to 12 degrees. We thought a warm front would (have) come and make (made) it warmer, but a warm front never came. The cold air that was there just left which warmed up the temperature.”
2. Because students couldn’t examine the data from every city, students use their maps to share what they’ve learned with the whole class. The teacher facilitates this class discussion so that based on the patterns (i.e., in every city a cold front resulted in lower temperatures) students could make a claim about cold fronts. What generalizations can we make about cold fronts?
Interestingly, some students may not report data that didn’t support their predictions. Teacher might want to ask: Did anyone find evidence that didn’t support your reason(s)? (Students will generalize that cold fronts bring colder temperatures, but also incorrectly generalize that all increase in temperatures must be because of warm fronts. Some students will be reluctant to share when their prediction or hypothesis was not supported by the data. These situations are perfect springboards to further learning and research.) Also, it is important to use this discussion as a formative assessment, to see what information the students still need to learn. / 2. Students share their maps and findings with the class. They are also encouraged to write about the questions that they have about weather and weather systems. (Many students naturally asked about stationary fronts and occluded fronts and their effects on the weather, the causes of rain, the effects of low and high pressure systems, etc. These questions will be researched in the Extend portion of this lesson.)
EXPLAIN
Teacher Does (5 mins.) / Student Does (10 mins)
Teacher gives students this prompt: Based on what you have learned, write at least one claim about a weather system and its effect on the weather. Be sure to provide evidence to support your claim.
(For some students, the prompt might need to be more directed, like “Write a claim about a cold front and its effect on the weather.) / Students individually answer this prompt in writing.
EXTEND
Teacher Does / Student Does
What do you want to investigate about the weather? How can you use the weather data and maps from Weather Underground to confirm what you learn from informational texts?
Questions might include: What is a ______and what kind of effect does it have on the weather?(warm front, cold front, occluded front, stationary front, low pressure cell, high pressure cell)
Why do some cold fronts have rain or snow but others don’t?
Why do some warm fronts have rain or snow but others don’t?
What are the geographical origins of cold and warm fronts? (6 main air masses that affect weather in North America) / In teams, students pose weather related questions and conduct short research projects. Students use informational texts and models found on websites to research weather systems, to make a claim about a weather system, and use weather data and maps as evidence to support their claim. They will present their findings in a multimedia presentation using Prezi, Popplet, or Google docs.
For articles about weather and weather systems:
·  http://usatoday30.usatoday.com/weather/wstorm0.htm
For simulation of four fronts:
·  http://www.phschool.com/atschool/phsciexp/active_art/weather_fronts/
For weather info for kids:
·  http://www.weatherwizkids.com/index.htm
·  http://geography.about.com/od/climate/a/highlowpressure.htm
·  http://www.nc-climate.ncsu.edu/edu/k12/BackgroundandBasics
STEM/WORKFORCE PREPAREDNESS CONNECTION
Teacher Does (Time) / Student Does (Time)
Teacher provides links to students:
·  http://www.meetmeatthecorner.org/episode/an-interview-with-a-meteorologist (video)
·  http://www.pbslearningmedia.org/resource/ess05.sci.ess.watcyc.kidmeteor/kid-meteorologist/ (video about a 14 year old girl who is a “kid meteorologist)
·  http://www.weatherwizkids.com/career-becoming-meteorologist.htm
·  http://www.bls.gov/ooh/life-physical-and-social-science/atmospheric-scientists-including-meteorologists.htm
·  http://earthguide.ucsd.edu/earthguide/pdfs/careermet.pdf / Students will explore the sites related to careers in meteorology. They will respond to questions about the nature of the work in meteorology, the tools a meteorologist uses, the education required, and employment opportunities.

CyberQUEST Dissemination Workshop March 2014 Weather, or Not! 1