Large Scale Time Series Microscopy of Neovessel
Growth During Angiogenesis

Urs Utzinger1, Brenda Baggett1, Jeffrey A. Weiss2, James B. Hoying3,Lowell T. Edgar2

1Department of Biomedical Engineering

University of Arizona

2Department of Bioengineering, and

Scientific Computing and Imaging Institute

University of Utah

3Division of Cardiovascular Therapeutics

Cardiovascular Innovation Institute

University of Louisville

Online Supplementary Materials Figure And Movie Legends

Supplementary Figure 1: Top) Cross section of the onstage incubation chamber. Tow photon microscopy at 780 nm excitation produced collagen related SHG and EGFP related fluorescence. A mixture of 5% CO2 and air flowed into the chamber and was preheated in the water bath. While the microscope stage moved, the skirt attached to the objective lens slid along the top stage glass plate maintaining a sealed chamber. Medium was replaced daily using stainless steel tubes without the need to move the sample dish. Middle) Sample dish with PTFE molds and stainless steel anchor mesh is illustrated prior to pouring the microvascular cultures. Bottom) Microvascular cultures and their anchor frames were held in place using stainless steel wires attached to the side of the petri dish

Supplementary Figure 2:The image processing pipeline of 4D imaging is illustrated. We transferred individual files from the imaging session to an external hard drive (eHD) and compressed them into a single archive file. The archive file was created for each day of imaging data and then transferred to the iRODS storage framework. We assembled the individual files into a matrix for each measurement channel and time point and stored it as HDF file. We preprocessed those files and stored them in a tagged image file format for further analysis and visualization. A custom program allowed for spatial co-registration and region of interest (ROI) selection. We rendered full fields of view with down sampled data while ROIs were visualized at full resolution.

Supplementary Figure3: There was minimal difference between the onstage incubation and incubation in a regular CO2 incubator as shown in this phase contrast and contrast enhanced image of two micro vessel cultures.

Supplementary Movie 4: Episodic growth and retraction is illustrated in this movie. We rendered signal from EGFP in green. The movie visualizes parent vessels (one o’clock position), sprouts, as well as individual cells. We rendered collagen related SHG in black. The scale bar is 50 microns long. Each frame is 2 hours apart. The movie shows advancement, retraction and reorientation of a sprout. The sprout tip often bifurcates briefly and the sprout diameter changes considerably over time. Two parent vessels connect early in the movie as they are located close to each other. Considerable migration of some single cells can be observed.

Supplementary Movie 5:Time laps evolvement of the vascular network from Fragment 4 in Fig. 4 shows the dynamics of neovessel regression and direction change

Supplementary Movie 6: Collagen interaction with sprout tips is illustrated in this time series movie of the region of interest depicted in Fig.6B. We rendered SHG white and EGFP green. For rendering of the collagen, we identified the depth location of the sprout tip (yellow circle) and rendered the data over a depth of only 10 microns, therefore following the depth location of the tip. We reduced the fluorescence intensity from the sprout overlaid it with the SHG image. The scale bar is 50 microns long. During sprout advancement the matrix is deformed which is most noticeable between sprout tip and parent vessel at the beginning of the sprouting and also during inosculation. The sprout tip appears to recruit collagen fibrils and form a mesh around the older sections of the sprout. Fan like rearrangement of the collagen fibrils in front of the sprout tip is most noticeable before inosculation. Increased condensation of collagen can be observed unilaterally at the inner side of the curved neovessel.

Supplementary Figure7: Several neovessel inosculation patterns were observed. A) Neovessels approaching each other with subsequent tip to tip inosculation, B) Tip to parent vessel inosculation shown here with multiple connections between two parent vessels, C) Neovessel branching and both branches inosculating shown here with the formation of a 5 way intersection with multiple inosculations, D) Tip to stalk inosculation shown here with the stalk forming a branch before inosculating. Numbers indicate hours after start of imaging.

Supplementary Movie8: Inosculation of the sprouts depicted in Fig. 6A is illustrated in this time series movie from a three o’clock view. The largest extent of the field of view is about 480 by 200 microns. The time interval between each frame is 2 hours. We rendered signal from EGFP green and SHG from collagen black. Two sprout tips grow towards each other over some considerable distance while there is both advancement and retraction. Inosculation occurs in “handshake” like manner where the two tips overlap on their side and then merge together. Significant variations in sprout diameter can be observed over time.

Supplementary Movie9: A)The full time series data from Fig.2 and Fig.8 (left) is illustrated in this movie. The micro vessel culture is circularlyconstraint and imaged every 2 hours for 5 days. We down sampled data 5 times before rendering. We show fluorescence from EGFP from a top down view with vessels further away rendered darker than the ones closer to the observer. The largest extent of the field of view is 2 by 2 mm. Almost all parent vessels form multiple sprouts usually originating at the parent vessel ends. Large sprouts form over a distance of several 100 microns. Growth occurs in an episodic fashion of advancement and retraction

B) The region of interest of the circular constraint culture in A) is depicted in this movie. Fluorescence signal from EGFPand SHG from collagen is rendered. The image at the bottom illustrates a minimum projection of the transmitted laser power in black and white and the z projection of the EGFP fluorescence in blue. One to two sprout form at the ends of the parent vessels and grow through the field of view. Advancement, retraction and reorientation as well as inosculation occur over the 5 day period.

Supplementary Movie10: A)The full time series data of a long axis constraint cultureis shown using same rendering parametersas in Supplementary Movie 9. Significant contraction occurs in the unconstraint direction. Sprouts form in a similar fashion as in Supplementary Movie 9, however sprouts are oriented in constraint direction which is caused by the contraction, but also growth,primarily oriented towards the culture’s anchor.

B) The region of interest of the long axis constraint culture from A) is shown. While parent vessels are preferentially oriented towards the culture’s anchor already at beginning of the time laps, the neovessels exclusively orient towards the constraint boundary.