Supporting information for

Kinetics and pathways of Bezafibrate degradation in the UV/chlorinedisinfection process

Xue-Ting Shi, Yong-Ze Liu, Yu-Qing Tang, Li Feng, Li-Qiu Zhang

Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China

Corresponding author. Address: Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, PR China.

Tel: +86 010 62336528; Fax: +86 010 62336900.

E-mail address:

This document consists of 15 pages including 2 tables,1 testand5 figures

1

Table S1. Principal reactions in UV/Chlorine system.

No / Reactions / Rate constants and pKa / Reference
1 / HOCl/OCl- + hv → HO• + Cl• / rHO•=I0ФHOClfHOCl(1-e-A)
rO•-= I0ФOCl-fOCl-(1-e-A)
rCl•=I0{ФHOClfHOCl(1-e-A)+ ФOCl-fOCl-(1-e-A)};
A=2.303b(εHOCl[HOCl]+εOCl[OCl-]+Σεsi[Si];
fHOCl=2.303bεHOCl[HOCl]/A;
fOCl-=2.303bεOCl-[OCl-]/A;
ФHOCl=1.45±0.1, ФOCl-=0.7±0.1;
εHOCl=59±0.1 M-1 cm-1, εOCl-=66±0.1 M-1 cm-1
I0=1.291×10-7EinsteinL-1 s-1 / (Crittenden et al. 1999; Guan et al. 2011)
2 / H+ + ClO- → HOCl / k2=5.0×1010 M-1s-1 / (Fang et al. 2014)
3 / HOCl → H+ + ClO- / k3=1.6×103 s-1 / (Fang et al. 2014)
4 / HOCl ↔ H+ + OCl- / pKa=7.5 / (Fang et al. 2014)
5 / Cl• + Cl- ↔ Cl2•- / k5+=6.5×109 M-1 s-1; k5-=1.1×105 s-1 / (Jayson et al. 1973)
6 / Cl•+ Cl•→ Cl2 / k6=1.2 × 1010 M-1s-1 / (Kadam and Chuan 2016)
7 / Cl• + H2O ↔ ClOH•- + H+ / k7+=2.5×105 s-1; k7-=2.1×1010 M-1 s-1 / (Kläning and Wolff 2010)
8 / Cl• + OH- ↔ ClOH•- / k8+=1.8×1010 M-1 s-1;k8-=23 s-1 / (Kläning and Wolff 2010)
9 / Cl• + HOCl → H+ + Cl- + ClO• / k9 =3.0×109 M-1 s-1 / (Fang et al. 2014)
10 / Cl• + OCl- → Cl- + ClO• / k10=8.2×109 M-1 s-1 / (Tao et al. 2008)
11 / HO• + Cl- ↔ ClOH•- / k11+=4.3×109 M-1 s-1; k11-=6.1×109 s-1 / (Tao et al. 2008)
12 / HO•+ OH- → O•- + H2O / k12=1.3 ×1010 M-1s-1 / (Fang et al. 2014)
13 / HO• + HClO → H2O + ClO• / k13=8.46×104M-1 s-1 / (Sharpless and Linden 2003)
14 / HO• + ClO- → OH- + ClO• / k14=8.8×109 M-1 s-1 / (Sharpless and Linden 2003)
15 / HO• + HO• = H2O2 / k15=5.5×109 M-1 s-1 / (Connick 2002)
16 / HO• + H2O2 = HO2• + H2O / k16=2.7×107 M-1 s-1 / (Buxton 1988)
17 / O•- + H2O → HO•+ OH- / k17=1.8 ×106 M-1s-1 / (Buxton 1988)
18 / ClOH•- + Cl- ↔ Cl2•- + OH- / k18+=1.0×105 M-1 s-1; k18-=4.5×107 M-1 s-1 / (Buxton 1988)
19 / ClOH•- → HO•+ Cl- / k19=6.1 ×109 s-1 / (Buxton 1988)
20 / ClOH•- → OH-+ Cl• / k20=23 s-1 / (Sharpless and Linden 2003)
21 / ClOH•- + H+ → Cl•+ H2O / k21=2.1 ×1010 M-1s-1 / (Sharpless and Linden 2003)
22 / ClOH•- + Cl- → Cl2- + OH- / k22=1.0 ×105 M-1s-1 / (Sharpless and Linden 2003)
23 / Cl2•- + Cl2•- → Cl2 + 2Cl- / k23=2.1×109 M-1 s-1 / (Kadam and Chuan 2016)
24 / Cl2•- + OH• → HOCl + Cl- / k24=1.0×109 M-1 s-1 / (Buxton 1988)
25 / Cl2•- + OH- → ClOH•- + Cl- / k25=4.5 ×107 M-1s-1 / (Tao et al. 2008)
26 / Cl2•- + HO2• → O2 + 2Cl-+ H+ / k26=4.5×109 M-1 s-1 / (Kadam and Chuan 2016)
27 / ClO• + ClO• + H2O → ClO2- + ClO- + 2H+ / k27=2.5×109 M-1 s-1 / (Kadam and Chuan 2016)
28 / ClO2- + OH• → ClO2• + OH- / k28=4.2×109 M-1 s-1 / (Kadam and Chuan 2016)
29 / ClO2• + OH• → ClO3- + H+ / k29=4.0×109 M-1 s-1 / (Kadam and Chuan 2016)
Reactions with BZF
30 / HO• + BZT→ products / k30=8.0×109 M-1 s-1 / (Buxton 1988)
31 / Cl• +BZF → products / k31=5.0×108 M-1 s-1 / Estimated
32 / Cl2•- +BZF → products / k32=5.0×108 M-1 s-1 / Estimated
33 / ClO•+BZF→products / k33=5.0×108 M-1 s-1 / Estimated
other reactions
34 / Cl2 + H2O↔HOCl + H++ Cl- / k34=5.1 ×10-4 / (Fang et al. 2014)
35 / 2HOCl ↔ Cl2O + H2O / k35=8.7 ×10-3 / (Fang et al. 2014)
HCO3-
36 / HO•+ HCO3-→H2O+CO3•- / k36=8.5×106 M-1 s-1 / (Buxton 1988)
37 / Cl•+HCO3-→H++Cl-+ CO3•- / k37=2.2×108 M-1 s-1 / (Buxton 1988)
38 / Cl2•-+HCO3-→H++2Cl-+ CO3•- / k38=8.0×107 M-1 s-1 / (Buxton 1988)
39 / ClO•+CO32-→ClO-+ CO3•- / k39=600 M-1 s-1 / (Buxton 1988)
Cl-
40 / HO•+Cl-↔ClOH•- / K40+=4.3×109 M-1 s-1; k40-=6.1×109 M-1s-1 / (Kong et al. 2016)
41 / ClOH•-+ H+↔ Cl•+ H2O / k41+=2.1×1010 M-1 s-1; k41-=2.5×105 M-1s-1 / (Kong et al. 2016)
42 / Cl- +Cl•↔ Cl2•- / k42+=6.5×109 M-1 s-1; k42-=1.1×105 M-1s-1 / (Kong et al. 2016)
NB and t-BuOH
43 / HO•+NB→products / k43=3.9×109 M-1 s-1 / (Buxton 1988)
44 / HO•+t-BuOH→products / k44=6.0×108 M-1 s-1 / (Sharpless and Linden 2003)

Table S2Summary of identified intermediates determined by LC/MS-MS

Compound / Retention Time (RT, min) / Molecular Weight (MW) / Number of carbon / Structural Formula
BZF / 13.60 / 361(positive) / 19 /
C1 / 12.24 / 396(positive) / 19 /
C2 / 10.61 / 276(positive) / 19 /
C3 / 10.10 / 276(positive) / 15 /
C4 / 9.69 / 200(positive) / 9 /
C5 / 9.28 / 326(positive) / 19 /
C6 / 8.78 / 360(positive) / 19 /
C7 / 8.14 / 410(positive) / 19 /
C8 / 7.86 / 378(positive) / 19 /
C9 / 7.63 / 378(positive) / 19 /
C10 / 6.49 / 228(positive) / 10 /
C11 / 6.49 / 274(positive) / 12 /
C12 / 5.66 / 258(positive) / 12 /
C13 / 15.84 / 412(positive) / 19 /

1

Text S1

[HO-]= (a) [H+]= (b)

pKa=7.5=pH+lg([HClO]/[ClO-]) (c)

[HClO]+[ClO-]=[free chlorine] (d)

where [HO-], [H+], [HClO], [ClO-] and [free chlorine] are the concentrations of HO-, H+, HClO, ClO- and free chlorine. The concentration of free chlorine was detected by DPD. [HClO] and [ClO-] were calculated by solving Eqs (a)~(d). No Cl- was measured in the chlorine stock solution (detection limit = 0.005 mmol/L)(Cai et al. 2013).

Fig. S1Schematic diagram of the large-volume UV irradiator.

Fig. S2BZF degradation in UV/chlorine process. Experimental conditions: I0=1.291×10-7EinsteinL-1 s-1, [NaClO]=0.8 mM, [BZF]=10 μM, pH=7.0, at room temperature, T=20±1°C.

Fig. S3 BZF degradation in UV/H2O2 and UV/S2O82- processes. Experimental conditions: I0=1.291×10-7EinsteinL-1 s-1, [H2O2]=0.8 mM, [S2O82-]=0.8 mM, [BZF]=10 μM, pH=7.0, 10 mM phosphate buffer, T=20±1°C.

1

Fig.S4 Transformation pathwaysof the benzene ring in BZF by Cl•additional reaction.

Fig.S5The formation of the C6 in BZF degradation.

1

References

Buxton GV (1988) Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•OH) in aqueous solution Journal of Physical & Chemical Reference Data 17:513-886

Cai MQ, Feng L, Jiang J, Qi F, Zhang LQ (2013) Reaction kinetics and transformation of antipyrine chlorination with free chlorine Water Res 47:2830-2842

Connick RE (2002) The Interaction of Hydrogen Peroxide and Hypochlorous Acid in Acidic Solutions Containing Chloride Ion 69:1509-1514

Crittenden JC, Hu S, Hand DW, Green SA (1999) A kinetic model for H 2 O 2 /UV process in a completely mixed batch reactor Water Res 33:2315-2328

Fang J, Fu Y, Shang C (2014) The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System Environ Sci-wat Res 48:1859-1868

Guan YH, Ma J, Li XC, Fang JY, Chen LW (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system Environ Sci-wat Res 45:9308

Jayson GG, Parsons BJ, Swallow AJ (1973) Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter Journal of the Chemical Society Faraday Transactions 69:1597-1607

Kadam PD, Chuan HH (2016) Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament Int Urogynecol J 27:505 doi:10.1007/s00192-016-2952-5

Kläning UK, Wolff T (2010) Laser Flash Photolysis of HCIO, CIO−, HBrO, and BrO− in Aqueous Solution. Reactions of Cl- and Br-Atoms Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 89:243-245

Kong X, Jiang J, Ma J, Yang Y, Liu W, Liu Y (2016) Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products Water Res 90:15-23

Sharpless CM, Linden KG (2003) Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water Environ Sci-wat Res 37:1933-1940

Tao L, Han J, Tao FM (2008) Correlations and predictions of carboxylic acid pKa values using intermolecular structure and properties of hydrogen-bonded complexes Journal of Physical Chemistry A 112:775-782

1