Supplementary Data:

The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China

Jiao Tang,a,c Taicheng An,a,bJukun Xiong,a,bGuiying Lib,*

a State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

bGuangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China

c University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Prof. Guiying Li

Tel: +86-20-39322298

E-mail:

Experiential

Materials

The 16 PAHs standards contain naphthalene (Nap), acenaphthylene (Ace), acenaphthene (Dih), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flua), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IncdP), dibenz[a,h]anthracene (DiB), and benzo[g,h,i]perylene (BghiP).Surrogate standards for PAHs consist of five deuterated PAHs including naphthalene-d8, acenaphthylene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12. The 20 OCPs standards were α-, β-, γ-, δ-HCH, p,p′-DDD, p,p′-DDE, p,p′-DDT, α-chlordane, γ-chlordane, heptachlor (Heptach), heptachlor epoxide (Hepch epo), α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, dieldrin, endrin, endrin aldehyde, endrin ketone, and methoxychlor. Surrogate standards for OCPs were 2,4,5,6-tetrachloro-m-xylene (TMX) and 2,2′,3,3′,4,4′,5,5′,6,6′-decachlorobiphenyl (PCB209). The 15 PAEs standards were dimethyl phthalate (DMP), diethylphthalate (DEP), diisobutyl phthalate (DiBP), dibutylphthalate (DnBP), bis(4-methyl-2-pentyl)phthalate (BMPP), bis(2-ethoxyethyl) phthalate (BEEP), diamylphthalate (DAP), dihexyl phthalate (DHP), butylbenzyl phthalate(BBP), bis(2-methoxyethyl)phthalate (BMEP), bis(2-butoxyethyl) phthalate (BBEP), dicyclohexyl phthalate(DCHP), di(2-ethylhexyl) phthalate (DEHP), dinonylphthalate (DnNP), and dioctyl phthalate (DnOP). Surrogate standard for PAEs was only Diphenylphthalate (DphP).Hexamethylbenzene (HMB) was used as internal standard of PAHs and PAEs, while pentachloronitrobenzene (PCNB) was used for OCPs.

Sixteen PAHsstandard coupling withfivedeuterated PAHs surrogate standards in a mixture solution of 200 and 4000µgmL-1; twenty OCP standards(1000µg mL-1), their two surrogate standards of 2,4,5,6-tetrachloro-m-xylene (TMX)(1000µg mL-1) and2,2’,3,3’,4,4’,5,5’,6,6’-decachlorobiphenyl (PCB209)(500µg mL-1), as well as oneinternalstandard pentachloronitrobenzene (PCNB)(2000µg mL-1)were all purchased from Supelco (Bellefonte, PA, USA).Fifteen PAEs standard (1000µg mL-1) and one surrogate standards of di-phenyl phthalate (DphP) (500µg mL-1) were obtained from AccuStandard (New Haven, USA). Hexamethylbenzene (HMB)(2000µg mL-1) as internal standard for PAHs and PAEs were purchasedfrom Dr. Ehrenstorfer GmbH (Augsburg, Germany).

HPLC-gradient grade acetone, methanol and residual grade n-Hexane, dichloromethane were purchased from CNW Technologies GmbH (Germany) and used for sample analysis.Glassfiber filters (GFF, 142mm,Whatman,England) were baked at 450ºCfor 5 hand then weighed after constant weight for 24h. XAD-2 resins (Supelco, Bellefonate, USA) were Soxhlet extracted with methanol, DCM and methanolfor 24 h, respectively. Neutral alumina (100-200 mesh, Shanghai, China) and neutral silica gel (80-100 mesh, Qingdao, China) were Soxhlet extracted with DCM for 72 h, then dried and stored in the jar.Afterward, alumina and silica gel were activated by heating at 250ºC and 180ºC for 12 h, respectively, and then deactivated with 3% deionized water after balance for 12 h, and saturated in n-hexane until use. Anhydrous sodium sulfate (Tianjin, China) was pre-cleansed at 450ºC for 5 hto remove impuritybefore the use. Glassware was rinsed with hot K2CrO7/H2SO4solution and baked at 450ºC for at least 4h.

Sample pretreatment

Sample extraction and purifying were performed as described in our previous study (Sun et al., 2014). The water samples were filtered through prebaked glass microfiber filters (GF/Fs, 142 mm in diameter, Whatman, England) to separate suspend particulate. The filters were stored at -20oC fridges until use for suspend particulate analysis. The filtrate were added three categories surrogate standards, and pass through the pretreated XAD-2 columns (Supelco, Bellefonte, USA) to enrich the target compounds. Then, the target compounds were eluted in turn using 50 mL menthol for one time, 40 mL methanol/dichloromethane (DCM)=4:1 for two times, and finally 50 mL of methanol/DCM=1:1 for two times. After the elution, the XAD-2 resins were extracted gradually with 90 mL and 50 mL (2 times) of methanol/DCM=1:1 with ultra-sonication for 15 min each time. The mixture of eluent and ultrasonic solution were extracted using liquid-liquid extraction with a mixture of DCM, saturation salt water and deionized water. The DCM fractions were then collected and concentrated to approximately 5-10 mL using rotary evaporation. The concentrated samples were exchanged with n-hexane and continuously concentrated to 1 mL for cleansing with a silica gel-alumina column(8 mm inner diameter) filled with 12 cm silica, 6 cm gel-alumina and 1 cm anhydrous sodium sulfate from the bottom to top. The column was in turn eluted with 10 mL n-hexane, 70 mL n-hexane/DCM (7:3) and 60 mL n-hexane/acetone (8:2). The PAHs and OCPs were in the second fraction and PAEs were in the last fraction. Finally, the separated fractions were concentrated to approximately 2 mL using rotary evaporation and sequentially concentrated to 200 µL under a gentle stream of high-purity nitrogen. The filters containing suspend particulate were freeze-dried and weighed after constant weight for 24 h and spiked surrogate standards, and then extracted using soxhlet extractor with 200 mL DCM for 72 h. The following steps were as same as the water sample treatments, except that the fraction parts were concentrated to 500 µL under a gentle stream of high-purity nitrogen. Finally, known concentrations of internal standard were spiked for the later instrumental analysis.

Instrument analysis

All the samples were quantified using a 7890A gas chromatography (GC) coupled with a 5975C mass spectrometer detector (Agilent Technologies, USA) equipped with a HP-5MS silica fused capillary column (30 m×250 μm×0.25 μm). For PAHs, the column temperature was programmed from 80oC to 280oC at a rate of 3 oC min-1 and to 300oC at 10 oCmin-1, then held there for 10 min. For OCPs, the temperature held at 80oC for 1 min and programmed to 140 oC at a rate of 15 oC min-1 and further to 280oC at 4 oC min-1, and finally at 10 oC min-1 to 300oC for 10 min. For PAEs, the temperature was programed as follow: initial 80oC held 1 min, increased to 180oC at 10 oC min-1 and held there for 1 min, and then to 260oC at 2 oC min-1, and finally to 300oC at 10 oC min-1 and held there for 10 min. In three processes, 290oC, 250oC, 300oC were selected for the injector temperature of PAHs, OCPs and PAEs, respectively.The mass spectrometer was performed in the selective ion monitoring (SIM) mode using positive ion electron impact ionization (EI).An aliquot sample (1 µL) was injected in the splitless mode and high-purity helium was served as the carrier gas (1.0 mL min-1). The individual compound were determined by comparing the GC retention time and the compound m/z referring to the exactly standard compound m/z by using scan ion monitoring (Scan) mode.

Table S1Sampling sites with basic parameters from Beijiang River

Sampling list / Sampling sites / GPS coordinates / Water temperature(ºC) / Dissolved O2 (mgL-1) / PH
North latitude / East longitude
S1 / Sanshui city / 112.8314 / 23.15972 / 23.1 / 5.13 / 7.44
S2 / Sanshui upstream / 112.8186 / 23.16639 / 24 / 5.81 / 7.36
S3 / Confluence of Sui River and Beijiang River / 112.8161 / 23.2375 / 24.2 / 8.04 / 7.13
S4 / Lubao town / 112.8989 / 23.36778 / 24.6 / 8.23 / 7.54
S5 / Shijiao town / 112.9369 / 23.47667 / 24.5 / 7.78 / 7.3
S6 / Longtang town / 112.9572 / 23.57389 / 24.3 / 6.53 / 7.25
S7 / Qingyuan city upstream / 113.1275 / 23.70556 / 24.6 / 7.12 / 7.75
S8 / Jiangkou town / 113.1944 / 23.73639 / 24.6 / 6.75 / 7.46
S9 / Feilai Gorge / 113.2611 / 23.84722 / 23.7 / 7.18 / 7.55
S10 / Lixi Town / 113.275 / 23.95139 / 24.6 / 6.83 / 7.52
S11 / Estuary of Lijiang River / 113.3047 / 24.03833 / 24.9 / 6.45 / 7.68
S12 / Yingde City / 113.4033 / 24.16528 / 24.3 / 5.82 / 6.99
S13 / Wangbu Town / 113.4533 / 24.26306 / 23.8 / 6.42 / 7.54
S14 / Baishiyao hinge / 113.5022 / 24.37722 / 24 / 6.54 / 7.50
S15 / Shakou Town / 113.5131 / 24.42389 / 23.6 / 5.75 / 7.32
S16 / Dakengkou Town / 113.5911 / 24.52444 / 24.1 / 5.96 / 7.25
S17 / Wushi Town / 113.5631 / 24.58583 / 23.8 / 6.62 / 7.38
S18 / Baisha Town / 113.5047 / 24.63333 / 23 / 5.73 / 7.34
S19 / 300 miter from Maba River Estuary / 113.5281 / 24.685 / 23.1 / 4.48 / 7.3
S20 / Maba River / 113.5306 / 24.68583 / 22.3 / 4.02 / 7.15

TableS2Recoveries of surrogate standards in the water and suspend particulate

Water / Suspend particulate
Average / SD / Average / SD
PAHs / Naphthalened8 / 49% / 5% / 66% / 9%
Acenaphthylene-d10 / 59% / 5% / 79% / 10%
Phenanthrene-d10 / 70% / 5% / 91% / 8%
Chrysene-d12 / 72% / 7% / 114% / 6%
Perylene-d12 / 79% / 6% / 182% / 9%
OCPs / TMX / 72% / 10% / 52% / 4%
PCB209 / 72% / 9% / 85% / 14%
PAEs / DPhP / 72% / 21% / 63% / 4%

TableS3Essential parameter using for non-cariogenic risk and cancer risk assessment

RfD(mg/kg·day) / Slope factor(mg/kg·day)-1 / Log KOW / RfD(mg/kg·day) / Slope factor(mg/kg·day)-1 / Log KOW
PAHs / OCPs
Nap / 2.0E-02 / 3.169 / α-HCH / 6.3 / 4.259
Dih / 6.0E-02 / 4.151 / β-HCH / 1.8 / 4.259
Flu / 4.0E-02 / 4.016 / γ-HCH / 3.00E-04 / 4.259
Ant / 3.0E-02 / 4.345 / heptach / 5.00E-04 / 4.5 / 5.864
Flua / 4.0E-02 / 4.933 / aldrin / 3.0E-05 / 17 / 6.749
Pry / 3.0E-02 / 4.933 / hepch epo / 1.3E-05 / 9.1 / 4.563
BaP / 7.3E+00 / 6.109 / γ-chlordane / 5.0E-04 / 0.35 / 6.26
BaA / 7.3E-01E / 5.521 / α-endosulfan / 6.0E-03 / 3.497
BbF / 7.3E-01 E / 6.109 / α-chlordane / 5.0E-04 / 0.35 / 6.26
BkF / 7.3E-02 E / 6.109 / dieldrin / 5.0E-05 / 16 / 5.448
Chry / 7.3E-03 E / 5.521 / p,p′-DDE / 0.34 / 5.996
Dib / 7.3E+00 E / 6.697 / endrin / 3.0E-04 / 5.448
Incdp / 7.3E-01 E / 6.697 / β-endosulfan / 6.0E-03 / 3.497
p,p′-DDD / 0.24 / 5.873
PAEs / p,p′-DDT / 5.0E-04 / 0.34 / 6.794
DEP / 8.0E-01 / 2.646 / methoxychlor / 5.0E-03 / 5.667
DiBP / 1.0E-01 / 4.463
DnBP / 1.0E-01 / 4.61
BBP / 2.0E-01 / 1.9E-03P / 4.845
DEHP / 2.0E-02 / 1.4E-02 / 8.392

E=Environmental Criteria and Assessment Office; P=PPRT

Table S4The value for risk assessment from USEPA

Unit / value
Ingestion Rate (IR)a / liter/day / 1.4
Exposure frequency (EF)a / days/years / 365
Exposure duration(ED)a / years / 70
Skin surface area available for contact (SA)b / cm2 / 18000
Exposure time(ET)b / hours/day / 0.25
Volumetric conversion factor for water (CF)a / 1 liter/1000cm3
Body weight(BW)a / kg / 70
gastrointestinal absorption efficiencies (ABSGI)b / dimensionless / 0.5

a(USEPA 1989d),b(UAEPA 2014)

TableS5The concentrations of PAHs in the dissolved and particulate phase

In dissolvedphase (ng L-1) / In particulatephase (ng g-1)
Min / Max / Average / percentages / Detectable rate / Min / Max / Average / percentages / Detectable rate
Nap / 13 / 23 / 17 / 13%-23% / 100% / nd / 1.0×103 / 1.4×102 / 0-3.3% / 75%
Ace / 1.4 / 3.6 / 2.0 / 1.8%-2.6% / 100% / nd / 3.3×102 / 39 / 0-1.1% / 35%
Dih / 9.0×10-1 / 37 / 3.1 / 0.84%-26% / 100% / nd / 2.0×103 / 1.3×102 / 0-6.3% / 20%
Flu / 3.9 / 13 / 5.3 / 4.3%-9.0% / 100% / nd / 1.6×103 / 2.1×102 / 0-5.2% / 90%
Phe / 15 / 29 / 20 / 15%-27% / 100% / 59 / 2.7×103 / 7.1×102 / 1.2%-4.4% / 100%
Ant / 2.0 / 5.6 / 2.6 / 2.2%-3.7% / 100% / nd / 4.1×102 / 77 / 0-2.0% / 60%
Flua / 6.9 / 13 / 9.2 / 7.7%-12% / 100% / 1.9×102 / 8.5×103 / 2.0×103 / 4.9%-10% / 100%
Pyr / 5.6 / 11 / 6.9 / 6.0%-8.8% / 100% / 30 / 6.1×103 / 1.5×103 / 1.3%-8.6% / 100%
BaA / 2.4 / 9.1 / 3.1 / 2.4%-5.9% / 100% / 1.0×102 / 2.8×103 / 9.1×102 / 2.8%-7.6% / 100%
Chr / 3.6 / 10 / 4.6 / 3.3%-7.4% / 100% / 1.9×102 / 4.4×103 / 1.5×103 / 4.7%-10% / 100%
BbF / 2.3 / 8.9 / 3.0 / 2.1%-5.8% / 100% / 5.7×102 / 1.6×104 / 5.3×103 / 15%-25% / 100%
BkF / 1.9 / 7.3 / 2.4 / 1.7%-4.8% / 100% / 1.7×102 / 4.7×103 / 1.5×103 / 3.9%-8.8% / 100%
BaP / 2.4 / 8.8 / 2.9 / 2.1%-5.7% / 100% / 2.4×102 / 1.3×104 / 3.2×103 / 9.1%-15% / 100%
DiB / nd / 11 / 2.6 / 0-7.1% / 30% / 2.8×102 / 1.4×104 / 3.8×103 / 9.8%-18% / 100%
BghiP / nd / 4.0 / 2.0 / 0-4.9% / 55% / nd / 3.0×103 / 8.4×102 / 0-4.4% / 90%
IncdP / nd / 8.1 / 2.2 / 0-5.3% / 85% / 3.1×102 / 9.6×103 / 3.0×103 / 7.1%-14% / 100%
ΣPAHs / 69 / 1.5×102 / 89 / 2.3×103 / 8.6×104 / 2.5×104

Nd: not detected.

TableS6Comparison of PAHs levels with the other rivers studies

PAHs / Country / Numbers of PAHs / In dissolved phase / In particulate phase / reference
Weihe River / China / 16 / 3.5×102-4.4×103ngL-1 / 3.6×103- 1.5×105 ng L-1 / (Chen et al., 2015)
Yangtze River / China / 16 / 3.2×10-1-6.2 μgL-1 / (Feng et al., 2007)
Humen river / China / 62 / 8.5×102– 1.4×103 ng L-1 during flood tides
6.3×102- 2.0×103 ng L-1 during the ebb tides / (Liu et al., 2014)
Moscow River / Russian / 15 / 51-1.2×102ng L-1 / (Eremina et al., 2016)
Riverine Waters of Ulsan Coast / Korea / 16 / 10-88 ng L-1in dry season
10-70 ng L-1 in wet season / (You et al., 2012)
Daliao River / China / 16 / 71-4.3×103 ng L-1 / 2.0×103-1.2×104 ng L-1 / (Zheng et al., 2016)
Taihu Lake / China / 16 / 38-1.8×102 ng L-1 / 3.4×103-7.5×103 ngg-1 / (Qiao et al., 2007)
Ikpa River / Nigeria / 16 / 58-9.3×102 μg L-1 / (Inam et al., 2016)
Liaohe River / China / 16 / 1.1×102- 2.9×103ng L-1 in the dry period
95 - 2.8×103 ng L-1 in the level period / (Lv et al., 2014)
Hun River / China / 16 / 1.2×102-6.3×103 ng L-1 in the dry period
1.6×103-5.3×103 ng L-1in the flood period / (Zhang et al., 2013)
Songhua River / China / 16 / 1.6×102-2.7×103 ng L-1 / (Zhao et al., 2014)
East Lake / China / 16 / 10-5.3×102ng L-1 / (Yun et al., 2016)
Xijiang river / China / 16 / 22-1.4×102 ng L-1 / 41-6.6×102ngg-1 / (Deng et al., 2009)
Jialing river / China / 16 / 4.7×102-9.9×102 ng L-1 / (Cai et al., 2012)
Beijiang River / China / 16 / 69-1.5×102ngL-1 / 2.3×103-8.6×104ngg-1 / Current study

TableS7The concentrations of OCPs in dissolved and particulate phase

Dissolved phase(ngL-1) / Particulate phase(ngg-1)
Min / Max / Average / percentages / Detectable rate / Min / Max / Average / Detectable rate
HCHs / α-HCH / nd / 2.0 / 6.4×10-1 / 0-5.5% / 45% / nd / 1.1×102 / 41 / 0-12% / 90%
β-HCH / 1.6 / 3.3 / 2.2 / 2.7%-12% / 100% / nd / 2.6×102 / 78 / 0-20% / 85%
γ-HCH / 2.6×10-1 / 2.0 / 9.1×10-1 / 0.78%-4.6% / 100% / nd / 5.6×102 / 1.6×102 / 0-35% / 90%
δ-HCH / 1.9 / 6.4 / 4.2 / 6.6%-23% / 100% / nd / 2.6×102 / 85 / 0-20% / 80%
DDTs / p,p′-DDE / 5.0×10-2 / 2.3×10-1 / 8.0×10-2 / 0.12%-0.35% / 100% / nd / 2.8 / 6.9×10-1 / 0-1.1% / 45%
p,p′-DDT / 2.2 / 7.8 / 2.7 / 4.5%-12% / 100% / nd / 65 / 23 / 0-42% / 60%
p,p′-DDD / 8.9×10-1 / 17 / 6.1 / 3.3%-32% / 100% / nd / 31 / 15 / 0-18% / 90%
heptacher / heptach / 1.2 / 4.1 / 1.7 / 2.8%-7.2% / 100% / nd / 1.3×102 / 31 / 0-42% / 85%
heptachepo / nd / nd / nd / 0 / 0% / nd / 8.7 / 2.3 / 0-4.2% / 70%
chlordane / α-chlordane / nd / 5.0 / 1.3 / 0-9.5% / 95% / nd / nd / nd / 0 / 0 %
γ-chlordane / nd / nd / nd / 0 / 0% / nd / 1.0 / 1.2×10-1 / 0-0.13% / 15%
endosulfan / α-endosulfan / 4.0×10-1 / 14 / 2.7 / 1.5%-21% / 100% / 4.2 / 2.3×102 / 95 / 7.8%-37% / 100%
β-endosulfan / 1.4×10-1 / 1.7 / 5.2×10-1 / 0.57%-2.7% / 100% / nd / 1.6×102 / 29 / 0-12% / 45%
endosulfan sulfate / 3.0 / 11 / 5.9 / 8.1%-34% / 100% / nd / nd / nd / 0 / 0%
others / dieldrin / 2.6×10-1 / 1.9 / 6.3×10-1 / 0.98%-3.0% / 100% / nd / 1.0×102 / 17 / 0-8.0% / 95 %
aldrin / nd / 1.2×10-1 / 4.0×10-2 / 0-0.50% / 70% / 2.8 / 77 / 27 / 1.3%-15% / 100%
endrin / nd / nd / nd / 0 / 0% / nd / nd / nd / 0 / 0
endrin aldehyde / 3.0×10-1 / 2.9 / 1.6 / 0.82%-7.7% / 100% / 0 / 85 / 7 / 0-26% / 25%
endrin ketone / 1.3 / 4.6 / 1.6 / 3.2%-7.0% / 100% / nd / 34 / 12 / 0-6.7% / 85%
methoxychlor / 1.9 / 7.3 / 2.4 / 3.7%-11% / 100% / nd / 1.6×102 / 38 / 0-32% / 40%
Σ20OCPs / 23 / 66 / 35 / 19 / 1.7×103 / 6.6×102

Nd: not detected.

TableS8Comparison of OCPs levels with others studies

OCPs / Country / N / In dissolve phase / In particulate phase / reference
Total OCPs / ΣHCHs / ΣDDTs / Total OCPs / ΣHCHs / ΣDDTs
Yangchaihu Lake / China / 16 / 10-60 ngL-1 / 4.1–41 ngL-1 / 1×10-2-12 ngL-1 / (Hu et al., 2014)
East Lake / China / 16 / nd-1.2×102ngL-1 / nd–29 ngL-1 / nd–58 ngL-1 / (Yang et al., 2014)
Chenab River / Pakistan / 16 / 8-76ngL-1 / 3.3×10-1-12 ngL-1 / 1.9-21 ngL-1 / (Mahmood et al., 2014)
Riverine runoff
of the Pearl River Delta / China / 21 / 2.6-41ngL-1 / 1.1-20 ngL-1 / 5.0×10-1-15 ngL-1 / (Guan et al., 2009)
Yangtze River / China / 24 / 3.1-24 ngL-1 / 7.1×10-1-4.5ngL-1 / 2.8×10-1-4.9 ngL-1 / (Tang et al., 2013)
Hangzhou Bay / China / 10 / 1.4-26 ngL-1 / 9.6×10-1-19ngL-1 / 1.4×10-1-10ngL-1 / 2.5-28 ngL-1 / 7.4×10-1-9.2ngL-1 / 8.3×10-1-20ngL-1 / (Li et al., 2016)
Nanshan underground river / China / 23 / 61-9.4×102ngL-1 / 7.0-93ngL-1 / 1.0-47ngL-1 / (Alam et al., 2013)
Sarno River / Italy / 17 / 4.4×10-1-3.5ngL-1 / 6.0×10-3-8.5×10-1 ngL-1 / 2.3×10-1-1.2ngL-1 / 1.0×10-1-2.5 ngL-1 / 2.0×10-2-1.2ngL-1 / 4.0×10-2-1.2 ngL-1 / (Montuori et al., 2014)
Poyang Lake / China / 20 / 19-1.1×102 ngL-1 / 4.4-60 ngL-1 / 2.3-33 ngL-1 / (Zhi et al., 2015)
KarunRiver / Iran / 12 / 22-89µgL-1 / 7.3×10-1-12µgL-1 / 6.0×10-3-9.0×10-2µgL-1 / (Behfar et al., 2013)
Xiangshan Bay / China / 16 / 2.9-35 ngL-1 / 2.8-24 ngL-1 / 1.2×10-1-11ngL-1 / 2.5-30 ngL-1 / 1.7-8.1ngL-1 / 7.7×10-1-24 ngL-1 / (Li et al., 2012)
Huaihe River / China / 8 / 4.4-43ngL-1 / 8.5×10-1-13ngL-1 / 3.5-34 ngL-1 / 1.0-30 ngg-1 / 1.0-25 ngg-1 / nd-4.7ngg-1 / (Feng et al., 2011)
Current study / China / 20 / 23-66ngL-1 / 4.2-11ngL-1 / 3.2-19ngL-1 / 18-1.7×103ngg-1 / Nd-1.1×103ngg-1 / 2.1-92ngg-1

Nd: not detected.N: numbers of PAHs

Table S9Concentrations of PAEs in the dissolved and particulate phase

In dissolved phase (ngL-1) / In particulate phase (ngg-1)
Min / Max / Average / percentages / Detectable rate / Min / Max / Average / Detectable rate
DMP / 83 / 8.3×102 / 2.3×102 / 0.52%-6.5% / 100% / 3.7×10-1 / 1.3×102 / 39 / 0-1.1% / 100%
DEP / 1.3×102 / 4.2×102 / 2.4×102 / 1.0%-5.2% / 100% / 3.3×10-1 / 20 / 7.5 / 0.01%-0.14% / 100%
DiBP / 2.6×103 / 1.1×104 / 5.3×103 / 42%-70% / 100% / 9.2 / 1.3×103 / 4.5×102 / 0.31%-12% / 100%
DnBP / 1.7×103 / 1.1×104 / 3.6×103 / 24%-55% / 100% / 2.3×103 / 1.8×104 / 8.3×103 / 60%-87% / 100%
DEHP / 2.1 / 2.8×102 / 45 / 0.02%-2.5% / 100% / 1.9×102 / 3.3×103 / 1.4×103 / 6.3%-24% / 100%
others / BMEP / 5.6 / 46 / 15 / 0.05%-0.32% / 100% / nd / nd / nd / 0 / 0%
BMPP / nd / 6.9 / 2.2 / 0-0.05% / 40% / nd / nd / nd / 0 / 0%
BEEP / 5.3 / 32 / 12 / 0.06%-0.45% / 100% / nd / 4.5×102 / 78 / 0-6.6% / 20%
DAP / 2.7 / 9.7 / 3.9 / 0.02%-0.13% / 100% / nd / 46 / 19 / 0-0.68% / 85%
DHP / 1.8 / 6.4 / 2.2 / 0.01%-0.09% / 100% / nd / nd / nd / 0 / 0%
BBP / 4.7 / 16 / 8.1 / 0.04%-0.22% / 100% / nd / nd / nd / 0 / 0%
BBEP / 2.6 / 35 / 25 / 0.04%-0.45% / 100% / nd / nd / nd / 0 / 0%
DCHP / 2.0 / 7.0 / 2.7 / 0.01%-0.10% / 100% / nd / nd / nd / 0 / 0%
DnOP / 2.4 / 24 / 5.0 / 0.02%-0.33% / 100% / nd / 6.5×102 / 2.4×102 / 0-5.0% / 85%
DnNP / 2.1 / 8.6 / 2.7 / 0.01%-0.12% / 100% / nd / 1.2×103 / 3.7×102 / 0-12% / 60%
Σ6PAEs / 2.1×103 / 1.1×104 / 4.2×103 / 30%-57% / 2.6×103 / 2.1×104 / 1.0×104 / 85%-98%
Σ15PAEs / 4.9×103 / 2.0×104 / 9.5×103 / 3.0×103 / 2.2×104 / 1.1×104

Nd: not detected.

Table S10Comparison of PAEs levels with the others studies

PAEs / Country / N / In dissolved phase / In particulate phase / Reference
Selangor River / Malaysia / 6 / 22-1.2×103ng L-1 / (Santhi and Mustafa, 2013)
Yangtze River / China / 6 / 61-2.9×104ng L-1 / (Zhang et al., 2012)
lakes of Beijing / China / 6 / 3.9×10−1-3.2μg L-1 / 1.4×102-2.1×103 μgg-1 / (Zheng et al., 2014)
Hun River / China / 6 / 6.9-20µg L-1 in the Xi River
14-24 µg L-1 in the Pu River / (Li et al., 2015)
Yangtze River / China / 14 / 16-17µg L-1 / (Zhang et al., 2011)
Yellow River / China / 5 / 4.0×10-3-4.5×10-2mg L-1 / 41-94mgKg-1 / (Sha et al., 2007)
Yangtze River / China / 4 / 1.8×10-1-53 μg L-1 / (Du et al., 2013)
Moscow River / Russia / 5 / 51-85ng L-1 / (Eremina et al., 2016)
Kaveri River / India / 6 / 3.1×102-1.6×103ng L-1 / (Selvaraj et al., 2015)
Beijiang River / China / 6 / 2.1×103-1.1×104ng L-1 / 2.6×103 -2.1×104ngg-1 / Current study
Beijiang River / China / 16 / 4.9×103-2.0×104ng L-1 / 3.0×103-2.2×104ngg-1 / Current study

N: numbers of PAHs

Table S11 Pearson’s correlation coefficientsbetween PAHs, OCPs and PAEs with each other in dissolved phase (a) and particulate phase (b)

(a)Correlations
PAHs / OCPs / PAEs
PAHs / PearsonCorrelation / 1 / 0.646** / 0.308
Sig. (2-tailed) / 0.002 / 0.186
N / 20 / 20 / 20
OCPs / Pearson Correlation / 0.646** / 1 / 0.322
Sig. (2-tailed) / 0.002 / 0.167
N / 20 / 20 / 20
PAEs / Pearson Correlation / 0.308 / 0.322 / 1
Sig. (2-tailed) / 0.186 / 0.167
N / 20 / 20 / 20
**. Correlation is significant at the 0.01 level (2-tailed)
(b) Correlations
PAHs / OCPs / PAEs
PAHs / Pearson Correlation / 1 / 0.179 / 0.129
Sig. (2-tailed) / 0.451 / 0.588
N / 20 / 20 / 20
OCPs / Pearson Correlation / 0.179 / 1 / 0.589**
Sig. (2-tailed) / 0.451 / 0.006
N / 20 / 20 / 20
PAEs / Pearson Correlation / 0.129 / 0.589** / 1
Sig. (2-tailed) / 0.588 / 0.006
N / 20 / 20 / 20
**. Correlation is significant at the 0.01 level (2-tailed)

Fig. S1 The sampling sites of Beijiang River

Fig. S2 PAHs, OCPs and PAEs concentrations in particulate phase in Beijiang River

Fig. S3Sources analysis of PAHs in the dissolved phase in Beijiang River

Fig. S4Sources analysis of PAHs in the particulate phase in Beijiang River

Fig. S5Composition of OCPs in the dissolved (a) and particulate phase(b) in Beijiang River

Fig. S6 Sources identification of DDTs in dissolved (a) and the particulate phase(b) in Beijiang River

Fig.S7Hazard quotient of PAHs through ingestion absorption in dissolved phase (a) and particulate phase (b)

Fig.S8Lifetime cancer risk of PAHs of ingestion absorption in dissolved phase (a) and particulate phase (b)

Fig.S9 Hazard quotient of PAHs through dermal absorption in dissolved phase (a) and particulate phase (b)

Fig.S10Lifetime cancer risk of PAHs through dermal absorption inin dissolved phase (a) and particulate phase (b)

Fig.S11Hazard quotient of OCPs through ingestion absorption in dissolved phase (a) and particulate phase (b)

Fig.S12Lifetime cancer risk of OCPs through ingestion absorption in dissolved phase (a) and particulate phase (b)

Fig.S13 Hazard quotient of OCPs through dermal absorption in dissolved phase (a) and particulate phase (b)

Fig.S14Lifetime cancer risk of OCPs through dermal absorption in dissolved phase (a) and particulate phase (b)

Fig.S15Hazard quotient of PAEs through ingestion absorption in dissolved phase (a) and particulate phase (b)

Fig.S16Lifetimecancer risk of PAEs through ingestion absorptionin dissolved phase (a) and particulate phase (b)

Fig. S17Hazard quotient of PAEs through dermal absorption in dissolved phase (a) and particulate phase (b)

Fig.S18Lifetimecancer risk of PAEs through dermal absorption in dissolvedphase (a) and particulate phase (b)

Reference

Alam, M.J., Daoxian, Y., Jiang, Y.J., Yuchuan, S., Yong, L., Xin, X., 2013. Sources and transports of organochlorine pesticides in the Nanshan underground river, China. Environmental Earth Sciences 71, 1977-1987.

Behfar, A., Nazari, Z., Rabiee, M.H., Raeesi, G., Oveisi, M.R., Sadeghi, N., Jannat, B., 2013. The organochlorine pesticides residue levels in karun river water. Jundishapur journal of natural pharmaceutical products 8, 41-46.

Cai, W.-L., Luo, G.-Y., Xu, X.-Y., Du, X., 2012. Contamination characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface water from Jialing River in Chongqing. Environmental Science 33, 2341-2346.

Chen, Y., Jia, R., Yang, S., 2015. Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Dissolved Phase, Suspended Particulate Matter and Sediment from Weihe River in Northwest China. International journal of environmental research and public health 12, 14148-14163.

Deng, H.-M., Chen, Y.-H., Chang, X.-Y., 2009. Distribution and partition of polycyclic aromatic hydrocarbons (PAHs) in the Gaoyao section of Xijiang River. Environmental Science 30, 3276-3282.

Du, X., Li, X., Luo, T., Matsuur, N., Kadokami, K., Chen, J., 2013. Occurrence and Aquatic Ecological Risk Assessment of Typical Organic Pollutants in Water of Yangtze River Estuary. Procedia Environmental Sciences 18, 882-889.

Eremina, N., Paschke, A., Mazlova, E.A., Schuurmann, G., 2016. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia. Environ Pollut 210, 409-418.

Feng, C., Xia, X., Shen, Z., Zhou, Z., 2007. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ Monit Assess 133, 447-458.

Feng, J.L., Zhai, M.X., Liu, Q., Sun, J.H., Guo, J.J., 2011. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China. Ecotox Environ Safe 74, 2252-2259.

Guan, Y.F., Wang, J.Z., Ni, H.G., Zeng, E.Y., 2009. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate. Environ Pollut 157, 618-624.

Hu, Y., Yuan, L., Qi, S., Liu, H., Xing, X., 2014. Contamination of organochlorine pesticides in water and sediments from a waterbird-inhabited lake, East Central China. Environmental science and pollution research international 21, 9376-9384.

Inam, E., Offiong, N.A., Essien, J., Kang, S., Kang, S.Y., Antia, B., 2016. Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin, Niger Delta-Nigeria. Environ Monit Assess 188, 49.

Li, B., Hu, X., Liu, R., Zeng, P., Song, Y., 2015. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds. Environmental Earth Sciences 73, 5095-5106.

Li, W., Yang, H., Gao, Q., Pan, H., Yang, H., 2012. Residues of organochlorine pesticides in water and suspended particulate matter from Xiangshan Bay, East China Sea. Bulletin of environmental contamination and toxicology 89, 811-815.

Li, W., Yang, H., Jiang, X., Liu, Q., Sun, Y., Zhou, J., 2016. Residues and Distribution of Organochlorine Pesticides in Water and Suspended Particulate Matter from Hangzhou Bay, East China Sea. Bulletin of environmental contamination and toxicology 96, 295-302.

Liu, F., Yang, Q.S., Hu, Y.J., Du, H.H., Yuan, F., 2014. Distribution and transportation of polycyclic aromatic hydrocarbons (PAHs) at the Humen river mouth in the Pearl River delta and their influencing factors. Mar Pollut Bull 84, 401-410.

Lv, J., Xu, J., Guo, C., Zhang, Y., Bai, Y., Meng, W., 2014. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water from Liaohe River Basin, northeast China. Environmental science and pollution research international 21, 7088-7096.

Mahmood, A., Malik, R.N., Li, J., Zhang, G., 2014. Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab River, Pakistan. Ecotoxicology 23, 1713-1721.

Meng, Q., Taicheng, A.N., Xiangying, Z., Delin, Z., Guiying, L.I., Guoxia, Z., Jun, G.U.O., 2010. Levels and sources of typical persistent organic pollutants in drinking water sources of Xijiang River in Guangdong province. Ecology and Environmental Sciences 19, 556-561.

Montuori, P., Cirillo, T., Fasano, E., Nardone, A., Esposito, F., Triassi, M., 2014. Spatial distribution and partitioning of polychlorinated biphenyl and organochlorine pesticide in water and sediment from Sarno River and Estuary, southern Italy. Environmental science and pollution research international 21, 5023-5035.

Qiao, M., Huang, S., Wang, Z., 2007. Partitioning characteristics of PAHs between sediment and water in a shallow lake. Journal of Soils and Sediments 8, 69-73.

Santhi, V.A., Mustafa, A.M., 2013. Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environ Monit Assess 185, 1541-1554.

Selvaraj, K.K., Sundaramoorthy, G., Ravichandran, P.K., Girijan, G.K., Sampath, S., Ramaswamy, B.R., 2015. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environ Geochem Health 37, 83-96.

Sha, Y., Xia, X., Yang, Z., Huang, G.H., 2007. Distribution of PAEs in the middle and lower reaches of the Yellow River, China. Environ Monit Assess 124, 277-287.