ISSN 0352-5139

J. Serb. Chem. Soc. Vol. 69, No. 12 (2004)

CONTENTS

Organic Chemistry and Biochemistry

Y. Vaghasiya, R. Nair, M. Soni, S. Baluja and S. Shanda: Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine

991

A. Ni}iforovi}, M. B. Radoj~i} and B. H. Milosavljevi}: Gamma-radiation induced agglomeration of chicken muscle myosin and actine

999

R. M. Radoji~i}, S. D. Spasi}, Z. S. Sai~i}, T. B. Jovanovi} and J. B. Simi}-Krsti}: Superoxide dismutase activity as a function of culture aging of B-16 mouse melanoma cells (Preliminary communication)

1005

Polymers

D. Jovanovi}, M. S. Nikoli} and J. Djonlagi}: Synthesis and characterization of biodegradable aliphatic copolyesters with hydrophilic soft segments

1013

Z. Ka~arevi}-Popovi}, D. Kostoski, Lj.Novakovi}, N. Miljevi} and B. [e}erov: Influence of the irradiation conditions on the effect of radiation on polyethylene

1029

G. Ilia, E. Fagadar-Cosma, A. Popa and S. Iliesku: Styrene-divinylbenzene copolymer grafted with phosphonic acid dialkyl esters

1043

Inorganic Chemistry

J. Husárek, R. Pstorek, M. MaloÁ, Z. [indaláÍ and M. Pavlí~ek: Nicke(II) cyclohexylethyl-dithiocarbamate P-donor ligands in the coordination sphere

1053

Physical Chemistry

@. N. Todorovi} and S. K. Milonji}: Determination of intrinsic equilibrium constants at alumina/electrolyte interface

1063

J. M. Resa, C. Gonzáles, J. M. Goenaga and M. Iglesias: Influence of temperature on the volumetric properties of ethanol + water + 1-pentanol

1073

Electrochemistry

D. M. Dra`i}, J. P. Popi}, B. Jegdi} and D. Vasiljevi}-Radovi}: Electrochemistry of active chromium. Part IV. Dissolution of chromium in deaerated sulfuric acid

1099

Materials

Z. Odanovi} and M. Djurdjevi}: Investigation of the mechanism of mercury removal from silver-amalgam alloy

1111

A. Golubovi}, S. Nikoli}, S. Djuri} and N. Rom~evi}: Pb1-xMnxTe single crystals and their structural properties

1121

Chemical Engineering

@. Lj. Arsenijevi}, @. B. Grbav~i} and B. V. Grbi}: Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

1129

Environmental Chemistry

A. Savin, D. Veselinovi} and D. Markovi}: The correlation of the values of plant-available lead and cadmium in soil determined using different types of extragents

1145

M. Radenkovi}, T. Andjeli}, M. Kova~evi} and P. Vukoti}: Depleted uranium in the air during the cleanup operation at Cape Arza

1153

Contents of Volume 69

1157

Subject index

1165

Author index

1169

J. Serb. Chem. Soc. 69 (12) 991-998 (2004)

UDC 542.913+54.02:547.576+547.77

JSCS-3227

Original scientific paper

Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine

YOGESH KUMAR VAGHASIYAa, RATHISH NAIRa, MAYUR SONIb, SHIPRA BALUJAb and
SUMITRA CHANDAa*

aDepartment of Biosciences and bDepartment of Chemistey, Saurashtra University, Rajkot 360005, India (e-mail: )

(Received 11 February 2004)

Abstract: Schiff bases derived from 4-aminoantipyrine and vanillin were evaluated for their potential as antibacterial agents against some Gram positive and Gram negative bacterial strains. The antibacterial activity was studied against P. pseudoalcaligenes ATCC 17440, P. vulgaris NCTC 8313, C. freundii ATCC 10787, E. aerogenes ATCC 13048, S. subfava NCIM 2178 and B. megaterium ATCC 9885. The determination of the antibacterial activity was done using the Agar Ditsh method. The Schiff bases produced were: (1) 4-(4-hydroxy-3-methoxybenzylideneamino)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VV1]; (2) 4-(benzylideneamino)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY2]); (3) 4-[(furan-3-ylmethylene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY3]; (4) 4-(4-methoxybenzylideneamino)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY4]; (5) 2-methoxy-4-[(4-methoxyphenylimino)methyl]phenol [VY5]; (6) 4-[(2,4-dimethylphenylimino)methyl]-2-methoxyphenol [VY6]); (7) 2-methoxy-4-(naphthalene-1-yliminomethyl)phenol [VY7] and (8) 4-[(4-hydroxy-3-methoxybenzylidene)amino]-N-(5-methylisoxazol-3-yl)benzenesulfonamide [VY8]. The antibacterial activity was evaluated in two polar solvents, DMSO and DMF. The Schiff bases derived from vanillin as the central molecule with 2,4-dimethylaniline and sulphamethoxazole as the side chain in DMSO effectively inhibited the investigated bacteria and appear to be promising antimicrobial agents.

Keywords: Schiff bases, antibacterial activity, DMSO, DMF.

REFERENCES

1. K. Y. Lau, A. Mayr, K. K. Cheung, Inorg. Chim. Acta 285 (1999) 223

2. A. S. Shawali, N. M. S. Harb, K. O. Badahdah, J. Heterocyclic Chem. 22 (1985) 1397

3. N. Raman, V. Muthuraj, S. Ravichandran, A. Kulandaisamy, Proc. Ind. Acad. Sci. 115 (2003) 161

4. S. K. Sridhar, A. Ramesh, Ind. J. Chem. Soc. 41 (2002) 668

5. Z. Wei, C. Qiong, H. Chao-gang, Huazhong Shifan Daxue. Xuebao Zirankexue ban 36 (2002) 478

6. Y. Dong-Dong, J. Yan Lan, S. Lu, Chinese J. Chem. 19 (2001) 1136

7. P. Piotr, B. Bogumil, Biopolymers 67 (2002) 61

8. Rh. Miao, Li. Shuoliong, Y. Rudong, V. L. Y. Welbing, Ind. J. Chem. 42 (2003) 318

9. Z. Yuxia, Z. Tao, M. Wanshan, Z. Haibin, C. Suifeng, Hauxue Shiji 24 (2002) 117

10. M. A. Gawad, Y. M. Issa, S. M. Abd-Alhamid, Egypt J. Pharm. Sci 34 (1993) 219

11. V. V. Mulwad, J. M. Shirodkar, Ind. J. Hetrocyclic Chem. 11 (2002) 199

12. N. Sari, S. Arslan, E. Logoglu, I. Sariyan, G. U. J. Sci 16 (2003) 283

13. S. Rao, A. S. Mitra, J. Ind. Chem. Soc. 55 (1978) 420

14. S. A. Khan, A. A. Siddiqui, B. Shibeer, Asian J. Chem. 14 (2002) 117

15. A. Marchetti, C. Preti, M. Tagliazucchi, L Tassil, G. Tosi, J. Chem. Eng. Data 36 (1991) 360.

J. Serb. Chem. Soc. 69 (12) 999-1006 (2004)

UDC 51–78+502.57:547.96+637.413

JSCS-3228

Original scientific paper

Gamma-radiation induced damage of proteins in the thick
fraction of egg white

MARIJA VU^KOVI] and MARIJA B. RADOJ^I]

Laboratory of Molecular Biology and Endocrinology, Vin~a, Institute of Nuclear Sciences, P.O.Box 522, 11001 Belgrade, Serbia and Montenegro, (e-mail: )

(Received 5 December 2003, revised 16. March 2004)

Abstract: Quantitative and qualitative data on the radiolytic behaviour of moderately complex protein structures may be of great prospective help for a better understanding of the biological effects of ionizing radiation in vivo. One such convenient model system is the protein hydrogel of the thick fraction of egg white, the protein network of which is similar to the structures of mammalian mucous tissues. In this study, the hydrogel of the thick fraction of egg white was saturated with N2O and irradiated with 1.5 – 45 kGy from a 60Co-gamma ray source. The structural alterations of the hydrogel proteins were followed by Sephadex G-200 exclusion chromatography, denaturing SDS-polyacrylamide gel electrophoresis, viscosity and turbidity measurements. The results indicate that irradiation led to a breakdown of the protein network of the thick fraction of egg white and to cross-linking and fragmentation of its constituents. The hydrogel decomposition, as well as the constituent protein cross-linking and fragmentation, were dose–dependent processes, with fragmentation prevailing below absorbed dosis of 10-15 kGy, and cross-linking prevaling at doses > 15 kGy. The observed radiolytic behaviour of the protein hydrogel of the thick fraction of egg white suggested that irradiation of similar mucin containing structures might also result in an accumulaton of structurally altered and conceivably non-functional proteins in vivo.

REFERENCES

1. E. J. Hall, Linear Energy Transfer and Relative Biological Effectiveness, in Radiobiology for the Radiologist, Eric J.Hall, Ed., J. B. Lippincott Co., Philadelphia, 1994 pp. 153-164

2. M. C. Rose, W. A. Voter, C. F. Brown, B. Kaufman, Biochem. J. 222 (1984) 371

3. J. K. Sheehan, I. Carlstedt, Biochem. J. 221 (1984) 499

4. A. L. Romanoff, A. J. Romanoff, Chemistry of the Nonembryonic Portions of the Egg., in Biochemistry of the Avian Embryo, Alexis L. Romanoff and Anastasia J. Romanoff, Eds., Wiley, New York, 1967 pp. 177-232

5. M. Vu~kovi}, M. B. Radoj~i}, B. H. Milosavljevi}, J. Serb. Chem. Soc. 65 (2000) 157

6. C. Rabouille, M. A. Aon, D. Thomas, Arch. Biochem. Biophys. 270 (1989) 495

7. D. S. Robinson, J. B. Monsey, Biochem. J. 121 (1971) 537

8. Lj. Josimovi} M. Radoj~i}, B. H. Milosavljevi}, Radiation Phys. Chem. 47 (1996) 445

9. M. Radoj~i}, Lj. Josimovi}, B. H. Milosavljevi}, Polymer Preprints 35 (1994) 35

10. K. J. A. Davies, J. Biol. Chem. 262 (1987) 9895

11. W. M. Garrison, Chem. Rev. 87 (1987) 381

12. O. Yamamoto: Effect of Radiation on Protein Stability, in Stability of Protein Pharmaceuticals, Part. A: Chemical and Physical Pathways of Protein Degradation (T.J. Ahern and M.C. Manning, Eds., Plenum Press, New York 1992 pp. 361-421

13. J. Kuljanin, G. Vuj~i}, M. Radoji~i}, B. H. Milosavljevi}, J. Polymer Science, Part. B: Polymer Physics 38 (2000) 1729

14. Z. Tuce, E. Janata, M. Radoj~i}, B. H. Milosavljevi}, Radiat. Phys. Chem. 62 (2001) 325

15. U. K. Laemmli, Nature 227 (1970) 680

16. H. A. McKenzie, M. B. Smith, R. G. Wake, Biochem. Biophys. Acta 69 (1963) 222

17. I. Santra, B. K. Chatterjee, D. Bhaumink, S. C. Roy, Phys. Rev. A 43 (1991) 4296.

J. Serb. Chem. Soc. 69 (12) 999-1004 (2004)

UDC 54–78:636.52/.58:547.962.4

JSCS-3228

Original scientific paper

Gamma-radiation induced agglomeration of chicken muscle
myosin and actin

ANA NI]IFOROVI], MARIJA B. RADOJ^I] and BRATOLJUB H. MILOSAVLJEVI]

Laboratory of Molecular Biology and Endocrinology, Vin~a Institute of Nuclear Sciences,
P.O. Box 522-090, 11001 Belgrade, Serbia and Montenegro (e-mail: )

(Received 24 November 2003 revised 24 December 2004)

Abstract: Radiolytic behaviour of the major vertebrate muscle proteins: fibrillar myosin (molar mass, Mm = 520,000 g/mol) and filament forming actin (Mm = 42,050 g/mol) was studied using a SDS-polyacrylamide gel electrophoresis and quantified by high precision laser-densitometry. In order to study the OH radical contribution to the radiation damage, purified chicken myosin and actin (4 mM) were prepared in N2O saturated solution and irradiated with 1–3 kGy at 60Co gamma source. With respect to changes in the molecular mass, the only observed myosin and actin damage was dose dependent agglomeration of proteins. The corresponding radiation chemical yields of 5 ´ 10-8 mol J-1 and 6.3 ´ 10-8 mol J-1 were obtained for myosin and actin, respectively. This result confirmed that only the radiation-induced agglomeration is initiated with the reaction of the OH radical even in the situation where the OH radical concentration produced exceeds the protein concentration 500 times, thus enabling the multi-radical attack to occur.

Keywords: radiation, gamma rays, myosin, actin, protein agglomeration.

REFERENCES

1. Irradiation in the Production, Processing and Handling of Food 21. CRF Part 179 of the USA-Federal Register 62 (1997) 64107

2. The Codex Book of Trading Conditions for Foodstuff and General Use of Objects Conserved by Irradiation, Sl. list SFRJ 69 (1984) p. 1521 (in Serbian)

3. M. H. Stevenson, Proc. Nutrition Soc. 53 (1994) 317

4. A. Ni}iforovi}, M. Radoj~i}, B. H. Milosavljevi}, Radiat. Phys. Chem. 55 (1999) 731

5. E. W. Taylor, Science 261 (1993) 35

6. I. Rayment, R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, M. M. Benning, D. A. Winkelmann, G. Wasenberg, H. M. Holden, Science 261 (1993) 50

7. I. Rayment, H. M. Holden, M. Whittaker, C. B. Yohn, M. Lorenz, K. C. Holmes, R. A. Milligan, Science 261 (1993) 58

8. M. Lemaire, L. Thauvette, B. DeForesta, A. Viel, G. Beauregard, M. Potier, Biochem. J. 267 (1990) 431

9. J. H. Bowes, J. A. Moss, Radiat. Res. 16 (1962) 211

10. U. K. Laemmli: Nature 227 (1970) 680

11. Z. Tuce, E. Janata, M. Radojcic, B. H. Milosavljevic, Radiat. Phys. Chem. 62 (2001) 325

12. Lj. Josimovi}, M. Radojcic, B. H. Milosavljevic, Radiat. Phys. Chem. 47 (1996) 445

13. W. M. Garrison, Chem. Rev. 87 (1987) 381

14. O. Yamamoto: Stability of Protein Pharmaceuticals, Part. A: Chemical and Physical Pathways of Protein Degradation, Plenum Press, New York (1992) pp. 361–421.

J. Serb. Chem. Soc. 69 (12) 1005-1011 (2004)

UDC 577.15:576.385:577.164.1

JSCS-3229

Preliminary communicaton

PRELIMINARY COMMUNICATION

Superoxide dismutase activity as a function of culture aging of B-16 mouse melanoma cells

RATKO M. RADOJI^I]1, SNE@ANA D. SPASI]2, ZORICA S. SAI^I]3, TAMARA B. JOVANOVI]4 and JOVANA B. SIMI]-KRSTI]4

1Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade (e-mail: ), 2Center for Chemistry ICTM, P.O. Box 815, 11000 Belgrade, 3Institute for Biological Research “Sini{a Stankovi}”, Department of
Physiology, Bul. Despota Stevana 142, Belgrade and 4Fullerene Science and Technology Centre, Chemical Power Sources Institute, Batajni~ki put 23, Belgrade-Zemun, Serbia and Montenegro

(Received 15 December 2003, revised 8 March 2004)

Abstract: The C3 clone of B-16 mouse melanoma was cultured for 1, 6 and 9 days and analysed. The changes which are not directly linked to melanogenesis in the B-16 / C3 cultures during their maturation were characterized. Early (1 day), confluent (6 days) and old (9 days) cell cultures are distinguished by their leucine aminopeptidase (LAP) and a-naphthyl acetate esterase (ANAE) isoenzyme patterns. Both quantitative and qualitative changes in LAP and ANAE isoenzyme can be observed during culture maturation. There is an increase in the activity of the enzyme copper, zinc-containing superoxide-dismutase (CuZn SOD). The increaase in the CuZn SOD enzyme activity might be related to B-16/C3 cell melanogenesis and / or to differentiation.

Keywords: B-16 mouse melanoma, isoenzymes, a-naphthyl acetate esterase (ANAE), leucine aminopeptidase (LAP), copper, zinc–containing superoxide dismutase (CuZn SOD).

REFERENCES

1. J. T. Chang, K. T. Chen, C. L. L. Wang, Acta Biotechnol. 21 (2001), 243

2. A. Wozniak, B. Wozniak, G. Drewa, T. Drewa, Melanoma Res. 13 (2003) 19

3. H. C. Ha, A. Thiagalingam, B. D. Nelkin, R. A. Casero, Jr. Chim. Cancer Res. 6 (2003) 3783

4. W. Doge, Physiol. Rev. 82 (2002) 47

5. G. M. Bartoli, S. Bartoli, T. Galeotti, E. Bertoli, Biochim. Biophys. Acta 620 (1980) 205

6. D. P. Loven, L. W. Oberley, F. M. Rousseau, R. H. Stevans, J. Natl. Cancer Inst. 6 (1980) 377

7. A. Varachaud, O. Berthiervergnes, M. Rigaud, D. Schmitt, P. Bernard, Eur. J. Dermatology 8 (1998) 90

8. L. W. Oberley, T. D. Oberley, in Free Radicals, Aging and Degenerative Diseases J. E. Johnson, R. Walford, D. Harman, J. Miguel (Eds) 8 (1986) 325

9. O. H. Lowry, H. J. Rosebrough, A. L. Farr, R. J. J. Randal, J. Biol. Chem. 193 (1951) 265

10. H. P. Misra, I. Fridovich, J. Biol. Chem. 247 (1972) 3170

11. B. J. Davis, Ann. N. Y. Acad. Sci. 121 (1964) 404

12. C. Beauchamp, I. Fridovich, Biochim. Biophys. Acta 317 (1973) 50

13. J. G. Scandalious, Biochem. Genet. 3 (1969) 37

14. S. D. Tanskley, C. M. Rick, Theor. Appl. Genet. 56 (1980) 209

15. P. G. Hoel, Introduction to Mathematical Statistics (1966) 402

16. J. W. Kreider, M. F. Schmoyer, J. Natl. Cancer Inst. 55 (1975) 641

17. G. B. Pierce, Fed. Proc. 29 (1970) 1248

18. B. Kasraee, Dermatology, 205 (2002) 329

19. J. N. A. Vam Balgoy, E. Roberts, Biochem.Physiol. 62 (1979) 263

20. R. Morandini, J. M. Boeynaems, X. Duhant, F. Jacquemotte, E. Kinnaert, G. Ghanem, Cell. Mol. Biol. 45 (1999), 1053

21. P. A. Riley, Cell. Mol. Biol. 45 (1999) 951

22. M. M. Wick, Cancer Res. 40 (1980) 1414

23. M. M. Wick, Science 199 (1978) 775

24. M. M. Wick, Cancer Treat. Rep. 65 (1981) 861

25. P. G. Parsons, Biochem. Pharmacol. 34 (1985) 1801

26. Y. Tomita, A. Hariv, C. Kato, M. Seiji, J. Invest. Derm. 82 (1984) 573

27. M. R. Nogues, M. Giralt, I. Cervello, D. Delcatstillo, O. Espeso, N. Argany, A. Aliaga, J. Mallol, J. Invest. Derm. 119 (2002) 645.

J. Serb. Chem. Soc. 69 (12) 1013-1028 (2004)

UDC 542.913+678.741/.744:667.613.5:620.193.8

JSCS-3230

Original scientific paper

Synthesis and characterization of biodegradable aliphatic copolyesters with hydrophilic soft segments

DANIJELA JOVANOVI], MARIJA S. NIKOLI]# and JASNA DJONLAGI]

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia and Montenegro (e-mail: )

(Received 15 April 2004)

Abstract: In this study, the synthesis, structure and physical properties of two series of segmented poly(ester-ether)s based on poly(butylene succinate) and two different types of polyethers were investigated. The poly(ester-ether)s were synthesized by transesterification reaction of dimethyl succinate, 1,4-butanediol and poly(ethylene oxide) (PEO, Mn = 1000 g/mol) in the first series, and poly(tetramethylene oxide) (PTMO, Mn = 1000 g/mol) in the second. The mass fraction of soft segments was varied between 10 and 50 mass. %. The effect of the introduction of two different polyether soft segments on the structure, thermal and rheological properties were investigated. The composition of the poly(ester-ether)s, determined from their 1H-NMR spectra, showed that incorporation of soft polyether segments was successfully performed by the transesterification reaction in bulk. The molecular weight was estimated from solution viscosity measurements and complex dynamic viscosities. The thermal properties investigated by DSC indicated that the presence of soft segments lowers the melting and crystallization temperature of the hard phase, as well as the degree of crystallinity. Dynamical mechanical analysis was used to investigate the influence of composition on the rheological behavior of the segmented poly(ester-ether)s. The results obtained from an enzymatic degradation test performed on some of the synthesized polymers showed that the biodegradability is enhanced with increasing hydrophilicity.

Keywods: poly(ester-ether)s, poly(butylene succinate), poly(ethylene oxide), poly(tetramethylene oxide).

REFERENCES

1. A. C. Albertson, I. Varma, Adv. Polym. Sci. 157 (2002) 1

2. A. K. Mohanty, M. Misra, G.Hinrichsen, Macromol. Matter. Eng. 276/277 (2000) 1

3. M. Mochizuki, K. Mukai, K. Yamada, N. Ichise, S. Murase, Y. Iwaya, Macromolecules 30 (1997) 7403

4. H. Shirahama, Y. Kawaguchi, M. S. Aludin, H. Yasuda, J. Appl. Polym. Sci. 80 (2001) 340

5. M. Mochizuki, M. Hirami, Polym. Adv. Techn. 8 (1997) 203

6. T. Fujimaki, Polym. Deg. Stab. 59 (1998) 209

7. A. M. Reed, D. K. Gilding, Polymer 22 (1981) 499

8. M. Nagata, T. Kiyotsukuri, S. Minami, N. Tsutsumi, W. Sakai, Polym. Int. 39 (1996) 83

9. A. A. Deschamps, D. W. Grijpma, J. Feijen, Polymer 42 (2001) 9335

10. Y. Tokiwa, T. Suzuki, J. Appl. Polym. Sci. 26 (1981) 441

11. U. Witt. R.- J. Müller, W.- D. Deckwer, J. Macromol. Sci.-Chem. A32(4) (1995) 851

12. A. A. Deschamps, A. A. van Apeldoorn, J. D. de Bruijn, D. W. Grijpma, J. Feijen, Biomaterials 24 (2003) 2643

13. S.-I. Lee, S. -C. Yu, Y. -S. Lee, Polym. Deg. Stab. 72 (2001) 81

14. M. Nagata, T. Kiyotsukuri, S. Takeuchi, N. Tsutsumi, W. Sakai, Polym. Int. 42 (1997) 33

15. A. -C. Albertsson, O. Ljungquist, J. Macromol. Sci.-Chem. A23(3) (1986) 411

16. D. Chen, H. Chen, J. Bei, S. Wang, Polym. Int. 49 (2000) 269

17. F. Yao, Y. Bai, Y. Zhou, C. Liu, H. Wang, K. Yao, J. Polym. Sci: Polym. Chem. 41 (2003) 2073

18. Z. Gan, T. F. Jim, M. Li, Z. Yuer, S. Wang, C. Wu, Macromolecules 32 (1999) 590

19. J. Li, X.Li, X. Ni, K. W. Leong, Macromolecules 36 (2003) 2661

20. Y. H. Park, C. G. Cho, J. Appl. Polym. Sci 79 (2001) 2067

21. G. E. Sweet, J. P. Bell, J. Polym. Sci.: Part A-2 10 (1972) 1273

22. M. Yasuniwa, T. Satou, J. Polym. Sci.: Part B 40 (2002) 2411

23. M. S. Nikolic, J. Djonlagic, Polym. Deg. Stab. 74 (2001) 263

24. D. W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1990.

J. Serb. Chem. Soc. 69 (12) 1029–1041 (2004)

UDC 678.4–036.7:66.095.26.085

JSCS-3231

Original scientific paper

Influence of the irradiation conditions on the effect of radiation on polyethylene

ZORICA KA^AREVI]-POPOVI], DU[AN KOSTOSKI, LJILJANA NOVAKOVI], NADA MILJEVI] and BOJANA [E]EROV

Vin~a Institute of Nuclear Sciences, P. O. Box 522, 11001 Belgrade, Serbia and Montenegro
(e-mail: )

(Received 6 May, revised 18 May 2004)

Abstract: Two types of polyethylene, low density (LDPE) and high density (HDPE), as well as low density polyethylene containing an antioxidant were subjected to g-irradiation in the presence of air and in water. The irradiated polymers were studied using IR spectrophotometric analysis. The radiation induced oxidative degradation was followed through the formation of oxygen containing groups by the development of bands in the 1850–1650 cm-1 region and double bonds formation by the development of bands in the 1050–850 cm-1 region. The crosslinking efficiency was determined by measuring the gel content by extraction with xylene. The radiation induced changes in the molecular structure, evolution of oxygen containing species and formation, of vinyl double bonds as well as of the crosslinking efficiency are discussed in terms of the properties of the polymers in an electric field of low strength.

Keywords: HDPE, LDPE, g-irradiation, carbonyl groups, vinylene groups, trans-vinylene groups, crosslinking.

REFERENCES

1. A. Sing, J. Silverman, in. Radiation Processing of Polymers, Radiation Processing - An Overview A. Singh, J. Silverman, Eds. Hanser Publ. Munich, 1992, p. 6

2. Z. Ka~arevi}-Popovi}, D.Kostoski, Lj. Novakovi}, Rad. Phys. Chem. 55 (1999) 645

3. R. Setnescu, S. Jipa, T. Setnescu, C. Podina, Z. Osawa, Polym. Degrad. Stab. 61 (1998) 109

4. G. Chen, H. M. Banford, A. E. Davies, Conference on Electrical Insulation and Dieletric Phenomena, San Francisco, October 20–23, 1996, IEEE Ann. Rep., 821

5. A. R. R. Zahran, A. Y. Kander, A. A. Hegazy, M. E. Kassem, J. Appl. Polym. Sci. 49 (1993) 1291

6. P. Hedvig. Dielectric Spectroscopy of Polymers; Academia Kiado, Budapest, 1977, p. 160

7. The Radiation Chemistry of Macromolecules Vol. 2, M. Dole, Ed., Academic Press, New York, 1973, p. 271

8. E. Suljovruji}, Z. Ka~arevi}-Popovi}, D. Kostoski, J. Doj~ilovi}, Polym. Degrad. Stab. 71 (2001) 367

9. E. Suljovruji}, D. Kostoski, J. Doj~ilovi}, Polym. Degrad. Stab. 74 (2001) 167

10. E. Suljovruji}, D. Kostoski, Z. Ka~arevi}-Popovi}, J. Doj~inovi}, Polym. Int. 48 (1999) 1193

11. T. Okada, L. Mandelkern, J. Polym. Sci. 5 A-2 (1967) 239

12. G. Kampf, Characterizaton of Plastics by Physical Methods, Hanser Pub., Munich, 1986

13. H. M. Banford, R. A. Furacre, G. Chen, D. J. Tedford, Rad. Phys. Chem. 40 (1992) 401

14. A. Chapiro. The Radiation Chemistry of Polymeric Systems. Intersience/John Wiley and Sons, 1962, p. 429

15. R. A. Jones, I. M. Ward, D. J. Taylor, R. F. T. Stepto, Polymer 37 (1996) 3643

16. R. A. Jones, D. J. Groves, I. M. Ward, D. J. R. Taylor, R. F. T. Stepto, Nucl. Inst. Meth. Phys. Res. B 151 (1999) 213

17. R. M. Silverstein, G. C. Basler. Spectrometric Identification of Organic Compounds. Wiley, New York, 1967, p. 90

18. F. Gugumus, Polym. Degrad. Stab. 65 (1999) 5

19. I. G. Dragani}, Radiochimica Acta 70/71 (1995) 317

20. I. G. Dragani}, Z. D. Dragani}, The Radiation Chemistry of Water, Academic Press, New York, 1971, p.p. 91–116

21. R. J. Fleming, Rad. Phys. Chem.36 (1990) 59

22. T. Suguchi, S. Hashimoto, K. Arakawa, N. Hayakava, W. Kawakami, I. Kuriyama, Radiat. Phys. Chem. 17 (1981) 195

23. Y. Tabata, ACS Symposium Series 475 (1991) 31

24. M. Marinovi}-Cincovi}, Z. Ka~arevi}-Popovi}, D. Babi}, Radiat. Phys. Chem. 67 (2003) 425

25. Z. Ka~arevi}-Popovi}, D. Kostoski D. Z. Stojanovi}, V. \okovi}, Polym. Degrad. Stab. 56 (1997) 227

26. R. G. Brown, J. Appl. Phys. 34 (1963) 2382

27. G. Chen, R. A. Fouracre, H. M. Banford, D. J. Tedford, Rad. Phys. Chem. 37 (1991) 523

28. A. Kron, T. Reitberger, B. Stenberg, Polym. Int. 42 (1997) 131

29. Z. Zoepfl, V. Markovi}, J. Silverman, J. Polym. Sci. Polym. Chem. 22 (1984) 2017

30. F. M. Rugg, J. J. Smith, L. H. Wartman, J. Polym. Sci. 11 (1986) 1