YU-ISSN 0352-5139

J. Serb. Chem. Soc. Vol. 66 No. 1 (2001)

CONTENTS

Organic Chemistry

P. Had`i}, N. Vukojevi}, M. Popsavin and J. ^anadi: Nucleophilic opening of the 3,5-anhydro ring in 1,2-O-cyclohexylidene-a-D-xylofuranose

1

E. Comanita, G. Roman, I. Popovici and B. Comanita: Synthesis and reactivity of some Mannich bases. VIII. Studies on several Mannich bases derived from ortho-hydroxyacetophenones and their conversion into oximino derivatives

9

R.A. El-Sayed: Sulfur containig activated hydantoins. Synthesis and screening some novel benzylidenehydantoins amino acids derivatives

17

S. Stojanovi}, D. Molnár Gabór, Lj. Medi}-Mija~evi}, M. Saka~ and K. Penov Ga{i: Synthesis and chemical behaviour of 17a-butyl-3b,17b-dihydroxy-16-oximino-5-androstene (Note)

23

Electrochemistry

A. Buzarovska, I. Arsova and Lj. Arsov: Electrochemical synthesis of poly(2-methyl aniline): Electrochemical and spectroscopic characterization

27

Analytical Chemistry

M. B. Aleksi}, D. G. Agbaba, R. M. Bao{i}, D. M. Milojkovi}-Opsenica and @. Lj. Te{i}: Thin-layer chromatography of several antihypertensive drugs from the group of angiotensin converting enzyme inhibitors

39

N. Petrovi}, D. Budjelan, S. Coki} and B. Ne{i}: The determination of the content of gold and silver in geological samples

45

Chemical Engineering

S. M. [erbula and V. D. Stankovi}: Hydrodynamic characteristics of a two-phase gas-liquid flow upward through a fixed bed of spherical particles

53

J. Serb. Chem. Soc. 66(1)1–8(2001)

UDC 547.424.1:547.737

JSCS – 2824

Original scientific paper

Nucleophilic opening of the 3,5-anhydro ring in 1,2-O-cyclohexylidene-a-D-xylofuranose

PAVLE HAD@I]a, , NADA VUKOJEVI]b, MIRJANA POPSAVINa and JANO[ ^ANADIa#

aInstitute of Chemistry, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovi}a 3, YU-21000 Novi Sad and bDepartment of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, YU-11000 Belgrade, Yugoslavia

(Received 23 May 2000)

The reactivity of the oxetane ring in 3,5-anhydro-1,2-O-cyclohexylidene-a-D-xylofuranose (1) was exemplified by its regiospecific nucleophilic opening. The action of concentrated hydrobromic or hydroiodic acid on 1 resulted in the exclusive formation of the 5-deoxy-5-halo derivatives, while the action of acetyl chloride or acetyl bromide yielded the corresponding 3-O-acetyl-5-deoxy-5-halo derivatives in 70 – 90 % yield. Under strongly acidic reaction conditions, the protection of the cyclohexylidene acetal function remained intact.

Keywords: oxetane, sulfonyl esters, nucleophilic ring opening, D-xylofuranose derivatives.

REFERENCES

1. A. S. Pell, G, Pilcher, J. Chem. Soc., Faraday Trans. 61 (1965) 71

2. M. Kawana, H. Kuzuihara, S. Emoto, Bull. Chem. Soc. Jpn. 54 (1981) 1492

3. N. G. Cooke, D. A. Jones, A. Whiting, Tetrahedron 48 (1992) 9553

4. P. A. Levene, A. L. Raymond, J. Biol. Chem. 102 (1933) 317

5. B. Helferich, M. Burgdorf, Tetrahedron 3 (1958) 274

6. V. F. Kazimirova, Z. Obsch. Khim. 24 (1954) 626

7. V. F. Kazimirova, K. V. Levitskaya, Z. Obsch. Khim. 30 (1960) 723

8. S. Petrovic, E. Loncar, M. Popsavin, V. Popsavin, J. Planar Chromatography 10 (1997) 406

9. R. L. Whistler, T. J. Luttenergger, R. M. Rowell, J. Org. Chem. 33 (1968) 396

10. S. A. Carr, W. P. Weber, J. Org. Chem. 50 (1985) 2782

11. J. G. Buchanan, E. M. Oakes, J. Carbohydr. Res. 1 (1965) 242

12. D. Miljkovic, N. Vukojevic, Lj. Milenkovic, Glasnik. Hem. dru{tva Beograd 48 (1983) 303

13. A. A. Akhrem, G. V. Zaitseva, I. A. Mikhailopulo, J. Carbohydrate Res. 50 (1976) 143.

J. Serb. Chem. Soc. 66(1)9–16(2001)

UDC 547.427.2:547.388.1

JSCS – 2825

Original scientific paper

Synthesis and reactivity of some Mannich bases. VIII. Studies on several Mannich bases derived from ortho-hidroxyacetophenones and their conversion into oximino derivatives

EUGENIA COMANITA1, GHEORGHE ROMAN2, IRINA POPOVICI3 and
BOGDAN COMANITA4

1Department of Organic Chemistry, "Gh. Asachi" Technical University, 71A D. Mangeron Blvd., RO-6600 Iasi, Romania, 2Chemistry Department, "Transilvania" University, 29 Eroilor Blvd., RO-2200 Brasov, Romania, 3"Gr. T. Popa" University of Medicine and Pharmacy, 16 University St., RO-6600 Iasi, Romania and 4National Research Council of Canada, Institute for Chemical Process and Environmental Technology, Montreal Road Campus, KIA 0R6, Ottawa, Canada

(Received 22 December 1999)

The synthesis of several Mannich bases resulting from the reaction of 2-hydroxy-4-methylacetophenone with paraformaldehyde and secondary amines is reported. Another series of products was obtained from N,N-dimethyl substituted Mannich bases by replacing the amino group with pyrrolidine. Most of the Mannich bases were transformed into oximes by treatment with hydroxylamine hydrochloride in 10 % NaOH.

Keywords: ortho-phenolic ketones, Mannich bases, amine exchange reaction, Mannich bases oximes.

REFERENCES

1. M. Tramontini, Synthesis (1973) 703

2. M. Tramontini, L. Angiolini, Tetrahedron 46 (1990) 1791

3. A. M. Kuliev, M. S. Guseinov, S. A. Sardarova, T. Yu. Iskenderova, Zh. Org. Khim. 8 (1972) 1301

4. A. M. Kuliev, M. S. Guseinov, S. A. Sardarova, Uch. Zap. Azerb. Univ. Ser. Khim Nauk 3 (1971) 39 [C.A. 79 (1973) 91939]

5. E. Comanita, I. Popovici, B. Comanita, Gh. Roman, A. C. H. - Models in Chemistry 134 (1997) 3

6. E. Comanita, I. Popovici, B. Comanita, Gh. Roman, Bul. Inst. Politehn. Iasi. XLII (XLVI) (1996) 135 [C.A. 128 (1998) 140496]

7. I. Popovici, E. Comanita, Gh. Roman, B. Comanita, Acta Chim. Slov. 43 (1999) 413

8. I. Popovici, Doctoral Thesis, "Gh. Asachi" Technical University, Iasi 1996

9. E. Comanita, I. Popovici, Gh. Roman, G. Robertson, B. Comanita, Heterocycles 51 (1999) 2139

10. E. D. Taylor, W. L. Nobles, J. Am. Pharm. Assoc., Sci. Ed. 49 (1960) 317

11. J. A. Gautier, M. Miocque, D. Q. Quan, C. r. Acad. Sci. 258 (1964) 3731

12. Gh. Roman, E. Comanita, B. Comanita, C. Draghici, J. Serb. Chem. Soc. 63 (1998) 931

13. J. R. Dimmock, N. W. Hamon, L. M. Noble, D. E. Wright, J. Pharm. Soc. 68 (1979) 1033

14. L. Natova, L. Zhelyakhov, God. Vissh. Khimiko-Tekhnol. Inst. Sofia 24 (1978) 275 [C.A. 95 (1981) 220043]

15. F. L. Scott, R. J. MacConaill, J. C. Riordan, J. Chem. Soc. [C ] (1967) 44

16. U. R. Kalkote, D. D. Goswami, Aust. J. Chem. 30 (1977) 1947

17. R. M. Silverstein, G. C. Bassler, T. C. Merill, Spectrometric Identification of Organic Compounds, Wiley, 1981, p. 272

18. D. M. Fink, B. A. Kurys, Tetrahedron Lett. 37 (1996) 995 and references cited therein.

J. Serb. Chem. Soc. 66(1)17–21(2001)

UDC 547.622:547.78:547.466

JSCS – 2826

Original scientific paper

Sulfur containing activated hydantions.
Synthesis and screening some novel benzylidenehydantoins amino acids derivatives

RAGAB A. EL-SAYED

Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

(Received 19 September 1999, revised 7 May 2000)

5-Benzylidenehydantoin reacts with chlorosulfonic acid to give the corresponding p-sulfonyl chloride 1. Condensation with nucleophiles gives amino acid derivatives 2–7. Coupling reactions of some amino acid derivatives (2–6) with amino acid methyl ester hydrochloride in THF-Et3N medium using the dicyclohexylcarbodiimide method (DCC) furnish the desired dipeptide methyl esters 8–12. The spectral data of the synthesized compounds are briefly discussed.

Keywords: benzylidenehydantoins amino acids, dipeptide derivatives.

REFERENCES

1. R. A. El-Sayed, J. Serb. Chem. Soc. 56 (1991) 311

2. R. A. El-Sayed, N. S. Khalaf, F. A. Kora, Y. A. Abbas, Pak. J. Sci. and Industrial Research. 34 (1991) 369

3. R. A. El-Sayed, N. S. Khalaf, F. A. Kora, M. F. Badie, J. Chem. Soc. Pak. 14 (1992) 49

4. R. A. El-Sayed, N. S. Khalaf, F. A. Kora, M. H. El-Hakim, Proc Ind. Nat. Sci. Acad. 58 (1992) 389

5. R. A. El-Sayed, Phosphorus, Sulfur and Silicon. 131 (1997) 207

6. R. A. El-Sayed, Chemistry of Heterocyclic Compounds 7 (1998) 921

7. R. A. El-Sayed, J. Ind. Chem. Soc. 69 (1992) 618

8. R. A. El-Sayed, N. S. Khalaf, F. A. Kora, M, A. El-Gazzar, J. Serb. Chem. Soc. 59 (1994) 727

9. T. W. Rall, L. S. Schleifer, Drugs Effective in the Therapy of Epilepsis, New York (1985), p. 1638

10. C. A. Lopez, G. G. Trigo, The Chemistry of Hydantoins, Adv. Heterocyclic Chem. 38 (1985) 177

11. R. J. Cremlyn, R. S. Elias, H. J. A. Geoghagan, J. T. Braunholtz, Brit, 166 (1964) 967. [C.A. 62 (1935) 77689]

12. W. J. Boyd, W. Robson, J. Biochem. 29 (1935) 542

13. D. G. Harvey, W. Robson, J. Chem. Soc. 97 (1937)

14. G. Billek, Org. Synt. Coll. Vol. V (1973) 627

15. H. J. Wheeler, C. Hoffman, Am. J. Chem. 45 (1911) 308

16. T. B. Johnson, R. Wrenshall, J. Am, Chem. Soc. 37 (1915) 2133

17. M. Inomata, M. Itakura, K. Odaka, K. Takeuchi, Inagaki, Jap. 472 (1986). 6168. [C.A. 74 (1971) 59783 C]

18. R. J. Cremlyn, F. J. Swinbourna, J. G. Bloy, K. Pathak, O. Shode, J. Chem. Soc. Pak. 7 (1985) 111

19. G. V. Ruthovski, B. A. Ivin, V. A. Kirillova, N. A. Smorygo, Zh. Obshch Khim. 40 (1970) 1583 [C.A. 74 (1971) 59783 c]

20. R. Cremlyn, S. Jfthwa, G. Joiner, D. White, Phosphorus, Slufur, Silicon 36 (1988) 99.

J. Serb. Chem. Soc. 66(1)23–26(2001)

UDC 615.35:547.388.4:

JSCS–2827

Note

N O T E

Synthesis and chemical behaviour of 17a-butyl-3b,17b-dihydroxy-16-oximino-5-androstene

SRDJAN STOJANOVI]#, DORA MOLNÁR GÁBOR#, LJUBICA MEDI]-MIJA^EVI]#, MARIJA SAKA^# and KATARINA PENOV GA[I#

Institute of Chemistry, Faculty of Science, Trg Dositeja Obradovi}a 3, YU-21000 Novi Sad,
Yugoslavia

(Received 4 July, revised 13 October 2000)

Starting from 3b-hydroxy-16-oximino-5-androsten-17-one (1), the recently synthesized 16-oximino-17b-hydroxy-17a-butyl derivative 2 gave by the Beckmann fragmentation reaction with titanium(III) chloride or p-toluenesulphonyl chloride the corresponding D-seco derivative 3. However, using acetic anhydride, in addition to the 3b-acetoxy D-seco derivative 4, the 17-aza D-homo derivative 5 was obtained. The structure of compound 5 was proposed on the basis of NMR-spectroscopy.

Keywords: 17-aza-D-homo derivatives of androstene, Beckmann fragmentation.

REFERENCES AND NOTE

1. D. Miljkovi}, K. Penov Ga{i, E. Djurendi}, M. Saka~, Lj. Medi}-Mija~evi}, V. Pejanovi}, S. Stankovi}, D. Lazar, Tetrahedron Lett. 38 (1997) 4683.

2. IR spectra (wave numbers in cm–1) were recorded using a Perkin-Elmer 457 spectrometer as KBr discs or films. The 1H and 13C-NMR spectra were recorded using a Bruker AC 250E instrument, with tetramethylsilane as the internal standard. The chemical shifts are given in ppm (d-scale). The melting point were determined with a Buchi SMP-20 apparatus and are not corrected.

3. R. D. H. Heard, M. T. Ryan, H. I. Bolker, J. Org. Chem. 24 (1959) 172.

J. Serb. Chem. Soc. 66(1)27–37(2001)

UDC 547..551:542.9:541.138

JSCS – 2828

Original scientific paper

Electrochemical synthesis of poly(2-methyl aniline): electrochemical and spectroscopic characterization

ALEKSANDRA BUZAROVSKA, IRENA ARSOVA and LJUBOMIR ARSOV

Faculty of Technology and Metallurgy, University “St. Cyril and Methodius”, 91000 Skopje,
Macedonia

(Received 21 June, revised 31 October 2000)

Poly(2-methyl aniline) or poly(ortho-toluidine), as ring substituted derivative of aniline, has been synthesized electrochemically in various concentrations of H2SO4 and HCl, and then characterized by cyclic voltammetry, as well as by impedance and Raman spectroscopy. The cyclic voltammograms of poly(o-toluidine) and poly(aniline) show that the electrochemical polymerization of these two polymers proceeds by almost identical mechanisms. The Raman spectroscopical measurements suggest that the redox reactions of poly(aniline) and poly(o-toluidine) are similar in the potential range between –0.2 and 0.7 V vs. SCE. The impedance measurements showed that the conductivity of poly(o-toluidine) is an order of magnitude lower than that of the corresponding poly(aniline) form.

Keywords: poly(2-methyl aniline), electropolymerization, cyclic voltammetry, Raman spectroscopy.

REFERENCES

1. A. Efremova, A. Regis, Lj. Arsov, Electrochim. Acta 39 (1994) 839

2. G. Tourillon, F. Garnier, J. Electroanal. Chem. 135 (1982) 173

3. W. Focke, G. Wnek, Y. Wei, J. Phys. Chem. 91 (1988) 173

4. Lj. Arsov, J. Solid State Electrochem. 2 (1998) 266

5. D. Stillwel, S. M. Park, J. Electrochem. Soc. 135 (1988) 2254

6. A. Efremova, Lj. Arsov, J. Serb. Chem. Soc. 57 (1992) 127

7. W-S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82 (1986) 2385

8. E. M. Genies, J. F. Penneau, E. Vieil, J. Electroanal. Chem. 283 (1990) 205

9. N. Oyama, Y. Ohnuki, K. Chiba, T. Ohsaka, Chem. Lett. (1983) 1759

10. R. Noufi, A. J. Nozik, J. White, L. Fwarren, J. Electrochem. Soc. 129 (1982) 2261

11. S. J. Davies, T. G. Ryan, C. J. Wilde, G. Beyer, Synth. Met. 69 (1995) 209

12. T. Vikki, O. T. Ikkala, Synth. Met. 69 (1995) 235

13. M. Sato, S. Yamanaka, J. Nakaya, K. Hyodo, Electrochim. Acta 39 (1994) 2159

14. J. J. Langer, Synth. Met. 35 (1990) 301

15. Lj. Arsov, W. Plieth, G. Kobmehl, J. Solid State Electrochem. 2 (1998) 335

16. Lj. Arsov, K. Colanceska, N. Petrovska, J. Serb. Chem. Soc. 63 (1998) 289

17. Lj. Arsov, C. Kormann, W. Plieth, J. Raman Spectroscopy 22 (1991) 573

18. E. Genies, Panneau, M. Lapkowski, New J. Chem. 12 (1988) 46

19. S. Cattarin, L. Doubova, G. Mengoli, G. Zotti, Electrochim. Acta 33 (1988) 1077

20. M. Lecrerc, J. Guay, L. H. Dao, J. Electroanal. Chem. 21 (1988)251

21. B. Wang, J. Tang, F. Wang, Synth. Met. 13 (1986) 329

22. S. Wang, F. Wang, X. Ge, Synth. Met. 16 (1986) 99

23. Y. Wei, W. Focke, G. Wnek, A. Ray, A. MacDiarmid, J. Phys. Chem. 93 (1989) 495

24. J. E. Periera, M. L. A. Temperini, S. I. C. Torresi, Electrochim. Acta 44 (1999) 1887

25. J. Lacroix, P. Garcia, J. Audiere, R. Clement, O. Kahn, New J. Chem. 14 (1991) 87

26. A. Thyssen, A. Hochfeld, R. Kessel, A. Meyer, J. W. Schultze, Synth. Met. 29 (1989) E 357.

J. Serb. Chem. Soc. 66(1)39–44(2001)

UDC 549.284–002.4:543.544

JSCS – 2829

Original scientific paper

Thin-layer chromatography of several antihypertensive drugs from the group of angiotensin converting enzyme inhibitors

MIRJANA B. ALEKSI],1 DANICA G. AGBABA,1 RADA M. BAO[I],2
DU[ANKA M. MILOJKOVI]-OPSENICA2# and @IVOSLAV LJ. TE[I]2#

1Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P. O. Box 146, YU-11001
Belgrade and 2Faculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. Box 158, YU-11001 Belgrade, Yugoslavia

(Received 3 April, revised 26 June 2000)

A rapid and simple method for the chromatographic separation of pharmacologically active components contained in some antihypertensive drugs has been developed employing thin-layers of silica gel and polyacrylonitrile sorbent (PANS). The active compounds of Captopril – (S)-1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline, Enalapril – (S)-1-[N- [1-(ethoxycarbonyl)-3-phenylpropyl]-L-alanyl]-L-proline, Lisinopril – (S) -1-[N2-(carboxy-3-phenylpropyl)-L-lysyl]-L-proline, Quinapril – [3S-[2[R*(R*)],3R*]], -2- [2-[[1(- etho- xycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4-tetrahydro-3-iso-quinoline-carboxylic acid, Ramipril – [2S-[1[R*(R*)],2a3ab,6ab]]-1-[2[[1-(ethoxycarbo- nyl)-3-phenylpropyl]amino]-1-oxopropyl]octahydrocyclopenta[b]-pyrole-2-carboxylic acid and Cilazapril – [1S-[1a,9a (R*)]]- 9-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino] octahydro-10-oxo-6H-pyridazino[1,2-a][1,2] diazepine-1-carboxylic acid, were successfully separated by the presented procedures. For their chromatographic separation on silica gel sixteen and on PANS thirteen solvents were used.

Keywords: thin-layer chromatography, silica gel, polyacrylonitrile sorbent, antihypertensive drugs, angiotensin converting enzyme inhibitors.

REFERENCES

1. K. Shimada, M. Tanaka, T. Nambara, J. Chromatogr. 227 (1982) 445

2. K. Hayashi, M. Miyamoto, Y. Sekine, J. Chromatogr. 338 (1985) 161

3. H. Bökens, M. Foullois, R. F. Müller, F. Z. Anal. Chem. 330 (1988) 431

4. P. Colin, E. Scherer, J. Liquid Chromatogr. 12 (1989) 629

5. H. Hengy, M. Most, J. Liquid Chromatogr. 11 (1988) 517

6. V. Cavrini, R. Gotti, V. Andrisano, R. Gatti, Chromatographia 42 (1996) 515

7. Y. Matsuki, K. Fukuhara, T. Ito, H. Ono, N. Ohara, T. Yui, T. Nambara, J. Chromatogr. 188 (1980) 177

8. V. ^aplar, S. Rendic, F. Kajfez, H. Hofman, J. Kuftinec, N. Bla`evi}, Acta Pharm. Jugosl. 32 (1982) 125

9. T. Janji}, @. Te{i}, G. Vu~kovi}, M. ]elap, J. Chromatogr. 404 (1987) 307

10. @. Te{i}, S. Grguri}, S. Trifunovi}, D. Milojkovi}-Opsenica, T. Sabo, J. Planar Chromatogr. 10 (1997) 457

11. T. J. Janji}, D. M. Milojkovi}, @. J. Arbutina, @. Lj. Te{i}, M. B. ]elap, J. Chromatogr. 481 (1989) 465

12. @. Lj. Te{i}, T. J. Janji}, M. B. ]elap, J. Chromatogr. 585 (1991) 35

13. @. Lj. Te{i}, T. J. Janji}, R. M. To{i}, M. B. ]elap,Chromatographia 37 (1993) 599

14. T. J. Janji}, D. M. Milojkovi}, @. Lj. Te{i}, M. B. ]elap, J. Planar Chromatogr. 3 (1990) 495

15. T. J. Janji}, D. M. Milojkovi}, A. Bro}ovi}, @. J. Arbutina, M. B. ]elap, J. Chromatogr. 609 (1992) 419

16. T. J. Janji}, D. M. Milojkovi}, @. J. Arbutina, M. B. ]elap, J. Serb. Chem. Soc. 56 (1991) 33

17. @. Lj. Te{i}, R. M. Bao{i}, D. M. Milojkovi}-Opsenica, J. Chromatogr. 847 (1999) 303

18. H. E. Hauck, M. Mack, W. Jost, Chromatogr. Sci. 55 (1991) 87.

J. Serb. Chem. Soc. 66(1)45–52(2001)

UDC 549.282:549.283:543.062:620.11

JSCS – 2830

Original scientific paper

The determination of the content of gold and silver in geological samples

N. PETROVI], D. BU\ELAN,# S. COKI] and B. NE[I]#

Copper Institute, Zeleni bulevar 35, YU-19210 Bor, Yugoslavia

(Received 5 March, revised 15 September 2000)

A method has been elaborated for the determination of the content of gold and silver in geological samples by atomic absorption spectrophotometry (AAS) in combination with the fire assay method. The weight of sample used for analysis was 10 g. Sulphur present as sulphide, which is an undesirable element in smelting, was removed by the addition of iron to the charge. The sample was smelted with fluxes and lead oxide to replace the silver and gold by lead and to transfer non-precious elements to slag. Lead was separated from precious metals by cupellation. The separated silver and gold alloy was dissolved with aqua regia with addition of hydrochloric acid in excess. Silver and gold were determined from the same solution. For determination of the silver content, the AAS method with an air-acetylene flame was used. Gold was determined in a graphite furnace with the addition of a matrix modifier in an argon current, at an atomization temperature of t = 2200 ºC. The lower determination limit for silver was 0.05 g/t and for gold 0.005 g/t. The results of the analysis for silver and gold obtained with the proposed method showed good agreement with the results of the analysis of the same samples with the fire assay method.

Keywords: geological sample, gold, silver, fire assay, atomic absorption, air-acetylene flame, graphite furnace.

REFERENCES

1. F. M. Tindall, At. Absorp. Newsl. 4 (1965) 339

2. F. M. Tindall, At. Absorp. Newsl. 5 (1966) 140

3. Perkin Elmer, Analytical Methods for Atomic Absortpion Spectrophotometry, (1990) GC-6

4. E. Kontas, Atomic Spectroscopy 2 (1981) 59

5. T. Stafilov, T. Todorovski, Atomic Spectroscopy 8 (1987) 12

6. P. F. Moloughney, Talanta 24 (1977) 135

7. E. Denojer, Atomic Spectroscopy 10 (1989) 97

8. Perkin Elmer, Analytical Techniques for Graphite Furnace Atomic Absorption Spectrometry (1984)

9. A. Golob, A. Kandi}, B. Ne{i}, Chimia 52 (1998) 414

10. A. Sporea, R. Radulescu, S. Petrescu, Chimia 52 (1998) 416.

J. Serb. Chem. Soc. 66(1)53–64(2001)

UDC 541.124:541.123.2

JSCS – 2831

Original scientific paper

Hydrodynamic characteristics of a two-phase gas-liquid flow
upward through a fixed bed of spherical particles

SNE@ANA M. [ERBULA and VELIZAR D. STANKOVI]#

Technical Faculty Bor, University of Belgrade, P. O. Box 50, YU-19210 Bor, Yugoslavia

(Received 17 January, revised 31 July 2000)

The influence of an electrochemically generated gas phase on the hydrodynamic characteristics of a three-phase system has been examined. The two-phase fluid, (gas-liquid), in which the liquid phase is the continuous one, flows through a packed bed with glass spheres. The influence of the liquid velocity was examined, as well as the gas velocity and particle diameter on the pressure drop through the fixed bed. It was found that with increasing liquid velocity (wl = 0.0162–0.03 m/s), the relative pressure drop decreases through the fixed bed. With increasing current density, the pressure drop increases, since greater gas quantities stay behind in the fixed bed. Besides, it was found that with decreasing diameter of the glass particles, the relative pressure drop also decreases. The relationship betweeen the experimentally obtained friction factor and the Reynolds number was established.

Keywords: two-phase flow, fixed bed, water electrolysis, pressure drop, fluidization.

REFERENCES

1. U. Akman, A. K. Sunol, Chem. Eng. Sci. 49 (1994) 3555

2. I. Iliuta, F. C. Thyrion, O. Muntean, Chem. Eng. Sci. 51 (1996) 4987

3. F. Larachi, M. Cassanello, A. Laurent, N. Midoux, G. Wild, Chem Eng. and Proc. 36 (1997) 497

4. H. P. Hofmann, in Multiphase Chemical Reactors - Theory, Design, Scale-up, A. Gianetto and P. L. Silveston, Eds., Hemisphere, 1986

5. H.Van Landeghem, Chem. Eng. Sci. 35 (1980) 1912

6. P. A. Ramachandran, R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Science, 1983)

7. J. C. Charpentier, Advances in Chemical Engineering, Vol. 11. T. B. Drew and T. Vermeulen, Eds., Academic Press, 1981

8. J. C. Charpentier, in Multiphase Chemical Reactors - Theory, Design, Scale-up, A. Gianetto and P. L. Silveston, Eds., Hemisphere, 1986

9. S.-H. Chern, K. Muroyama, L.-S. Fan, Chem. Eng. Sci. 38 (1983) 1167

10. S.-H. Chern, L.-S. Fan, K. Muroyama, AIChE J. 30 (1984) 288

11. L.-S. Fan, K. Muroyama, S.-H. Chern, Chem. Eng. J. 24 (1982) 143

12. G. - H. Song, F. Bavarian, L. - S. Fan, R. D. Buttke, L. B. Peck, Can J. Chem. Eng. 67 (1989) 265

13. M. Obradovi} i saradnici, Hemijsko-tehnolo{ki priru~nik; knjiga 1: Hemijski i fizi~ki podaci i veli~ine, Rad, Beograd, 1987 (in Serbian)

14. D. A. Krieg, J. A. Helwick, P. O. Dillon, M. J. McCredy, AIChE J. 41 (1995) 1653

15. V. D. Stankovi}, R. Gruji}, A. A. Wragg, J. Appl. Electrochem. 28 (1998) 321

16. S. Ergun, Chem. Eng. Progress 48 (1952) 89.