Irreversibilityofabadstart:earlyexposure toosmoticstress limitsgrowth andadaptive developmental plasticity
Chi-Shiun Wu• IvanGomez-Mestre •
Yeong-ChoyKam
AbstractHarshenvironments experiencedearlyin development haveimmediateeffectsandpotentiallylong- lastingconsequencesthroughoutontogeny.Weexamined howsalinityfluctuations affectedsurvival,growthand developmentofFejervaryalimnocharistadpoles.Specifi- cally,wetestedwhetherinitialsalinityeffectsongrowth andratesofdevelopmentwerereversibleandwhetherthey affectedthetadpoles’ abilitytoadaptivelyaccelerate developmentinresponseto deterioratingconditionslaterin development.Tadpoleswereinitiallyassignedtoeitherlow orhighsalinity,andthensomewereswitched between salinity levelsuponreachingeitherGosner stage30(early switch)or38(lateswitch). Alltadpoles initiallyexperi- encinglowsalinitysurvivedwhereas thoseinitiallyexpe- riencinghighsalinityhadpoorsurvival,evenifswitchedto lowsalinity.Growthanddevelopmental ratesoftadpoles initiallyassignedtohighsalinitydidnotincrease after osmotic stressrelease.Initiallowsalinityconditions allowedtadpolestoattainafastpaceofdevelopment even ifexposedtohighsalinityafterwards. Tadpolesexperi- encing high salinity only late in development
CommunicatedbyRaoulVanDamme. C.-S.Wu Y.-C.Kam()
DepartmentofLifeScience,TunghaiUniversity, Taichung40704,Taiwan
e-mail:
I.Gomez-Mestre
Estacio´nBiolo´gicadeDon˜ana,
ConsejoSuperiordeInvestigacionesCient´ıficas, Avda.Ame´ricoVespucios/n,Sevilla,Spain
I.Gomez-Mestre
ResearchGroupofBiodiversity(UO,CSIC,PA), c/Catedra´ticoRodrigoUr´ıas/n,33071Oviedo,Spain
metamorphosedfasterandatasmaller size,indicatingan adaptiveaccelerationofdevelopment toavoidosmotic stress.Nonetheless, earlyexposuretohighsalinitypre- cludedadaptiveaccelerationofdevelopment, always causingdelayedmetamorphosisrelativetothoseininitially lowsalinity.Ourresultsthusshowthatstressfulenviron- mentsexperiencedearlyindevelopment cancritically impactlifehistorytraits,havinglong-lastingor irreversible effects,andrestrictingtheirabilitytoproduce adaptive plasticresponses.
Keywords Developmentalplasticity
Growthcompensation Metamorphosis Salinity
Fejervaryalimnocharis
Introduction
Harshenvironmental conditionscanhavedifferentconse- quences forsurvivalandlifehistorytraitsoforganisms dependingontheontogenetic timepointatwhichtheyare exposedtothem.Thus,harshenvironmentsexperiencedat anearlydevelopmental stagenotonlyhaveimmediate effectsontheorganism butcanalsohavelonglasting consequences throughoutontogeny(MetcalfeandMona- ghan2001).Inorganisms withcomplexlifecycles,the consequences ofalteringgrowthanddevelopmentaltra- jectoriesearlyinontogeny canevenpersistaftermeta- morphosis, affectingtheirsize,morphologyanddegreeof maturationatlaterstages(Pechenik2006;Gomez-Mestre etal.2010).Exposuretostressfulconditions earlyin development canalsorestricttheabilitytoproduceadap- tiveplasticresponseslaterinlife(AlvarezandNicieza
2002;De Block and Stoks 2005;Kishidaet al. 2010), hence reducing their ability to cope with changing
environments. Somespecies,however,canattenuatethe negativeeffectsofpoorinitialconditions byachieving compensatory growthiftheenvironmentalconditions improve(MetcalfeandMonaghan2001;Alietal.2003).It isessentialtounderstand howorganismsbecomemoreor lesssensitiveorresponsivetoenvironmentalchanges over thecourseofontogeny ifwewanttopredicthowenvi- ronmentalfactorswillinfluencetheirsurvivalandevolu- tion(Hensley1993).
Theenvironments experiencedbyamphibianlarvaeare usuallyheterogeneous andunpredictable,astheyareoften atriskfromponddrying,foodshortages, extremetem- peratures, predatorattacks,wateracidityorsalinity (Newman1992;Alford1999;Rose2005;WuandKam
2009).Development ofamphibianlarvaeisveryplastic, varyingtheirtimetoandsizeatmetamorphosis either adaptivelyinresponsetospecificenvironmentalcuesor non-adaptivelyduetoenvironmentalfluctuations them- selves (Newman 1992; Rose 2005; Rudolf and Ro¨del
2007).Tadpoles shouldgrowasmuchaspossiblewhile conditionsarebenignintheirlarvalenvironment(i.e.risk of mortality is low) but accelerate development and achieveanearlymetamorphosis iftheenvironment becomesinhospitable(Werner1986;Benard2004;Vonesh andWarkentin 2006).However, theeffectofanygiven environmental factorontadpoledevelopmentisoften highlydependent onthestageandcondition oftheanimal. Thus,thesameenvironmentalfactormaydecreasesurvi- vorship, growthanddevelopmental ratesifexperienced duringpremetamorphic stages,butacceleratedevelopment andinduceearlymetamorphosis ifexperiencedduring prometamorphicones(Denver1997;Denveretal.2002). Acceleratinglarvaldevelopmentmaycomeatthecostof smallerandlessmaturejuveniles(Newman 1992),butso doescontinueddevelopment understressfulconditions,in addition to reducing larval survival. This is relevant becausesmallsizeatmetamorphosisreduces post-meta- morphic survival (Smith1987;Berven1990;Gomez- MestreandTejedo2003;Chelgrenet al. 2006),delaystime tosexualmaturity(Semlitschetal.1988;Berven1990), andreducesthesizeatmaturity(Semlitsch etal.1988), overallreducingpopulationrecruitment(Smith1987).
Salinityisanimportantstressorformostamphibians duetotheirhighly permeableskinandinabilitytocon- centrateurine(Balinsky 1981;DuellmanandTrueb1994). Alltadpoles aresensitivetosalinity,andmoderatesalinity (2–9partsperthousand;ppt)decreases tadpolesurvival, growth,anddevelopment (ChristyandDickman2002; Gomez-Mestreetal.2004;Chinathambyetal.2006;Wu andKam 2009). Inmostsystems,pondsalinity islowestat thebeginning oftheamphibianreproductiveperiod,as pondsfillup,andgraduallyincreasesovertimeasponds evaporateandaremaximaljustpriortoponddesiccation.
Surprisingly,nostudiestodatehaveaddressedhowsalinity fluctuations canaffectamphibianlarvaldevelopment. However, afewspeciesbreedincoastalpoolswithstrong marineinfluence wheresalinitycanfluctuate considerably (WuandKam2009;SilleroandRibeiro2010).Tadpolesof theIndianricefrog(Fejervaryalimnocharis)livinginthe brackishwaterofcoastalrockpuddlesandpoolsformedby upliftedcoral onthetropicalGreenIslandofTaiwan pro- videanexcellentmodel systemtostudytheeffectsof salinity-induced stressoverlarvalontogenyongrowth, development andadaptivedevelopmental plasticity(Wu andKam2009).Weexaminedhowchanges insalinity affectedsurvival, growthanddevelopmentofF.limno- charistadpoles.Specifically, wetestedwhethersalinity effectsearlyindevelopmentwerereversibleandwhether theyaffectedtadpoles’ abilitytoadaptivelyaccelerate development.
Materialsandmethods
Studyanimals
Fejervarya limnocharis is a medium-sized frog (30–60 mm)distributedthroughouteast,southeast,andsouthAsia, including many small, isolated islands (Sumida et al.
2007).InTaiwan,F.limnocharisiswidelydistributedup toelevationsof1,000monthemainislandandonoff- shoreislands(Alexanderetal.1979;Yang1998).Fejer- varyalimnocharisusuallybreedsfromFebruary toSep- tember, with breedingcorrelated with rainfall and irrigationandrestrictedbylowtemperatures(Alexander etal.1979). Thisspecies usually breeds intemporary freshwater pools suchasricepoolsandroadside puddles, butsomepopulations breedinthebrackishwaterofrock poolsincoastalareas(WuandKam2009).Meanclutch sizevariesgreatly,witharangeofabout450–1,800,and thelarvalperiodislessthan2months(Alexanderetal.
1979). Studysite
Green Island(121.28°E,22.35°N)isasmalltropicalisland offthesoutheasterncoastofTaiwan,withatotalareaof
15km2.Theclimateonthisislandischaracterizedbyhigh
airtemperatureandabundant annualrainfall,withnodis- tinctdryseason(Ni2003).Typhoonsarefrequentbetween June and September,and usually bring abundantrains. Themonthly averageairtemperaturewas23.5°C andthe annualrainfallwas2,575mm(1998–2006;datafromthe CentralWeatherBureau,Taiwan). Duringthebreeding seasonofF.limnocharis(February–September),themost abundant rains occurred mainly between July and
September (averagemonthly rainfallabout290–320 mm). Fejervaryalimnocharisusuallybreeds inrockpools just above thehightideline.Poolswithtadpolesvaried greatly in size and shape (range of maximum diameter
11–534cm),andwererelatively shallowindepth(rangeof maximumdepth5–22cm) (WuandKam2009).These rockpoolsareuncommon breedingsitesforamphibians becausetheir smallsize,seawaterspillsandstrongrainfalls during the monsoon season cause frequent and large salinityfluctuations.Salinityinthesepoolsvariesbetween
0and23ppt,althoughnotadpoleshavebeenfoundin poolswithsalinityover12 ppt(WuandKam2009).Our fieldsurveysshowedtadpolescouldbeexposedtodifferent salinities(0–12ppt)duringontogeny,especiallyatanearly developmental stage (Gosner stage 26; Gosner 1960) (Fig.1).
Experimentaldesign
Wecollectedtadpolesof F.limnocharisatGosnerstage26 (Gosner1960)fromsixpools(salinitywas0,1,1,2,3and
3 ppt)onGreenIslandinJune2006.Tadpoles fromeach poolweremixedtogetherandthenrandomlyassigned to oneofsixtreatments.Tadpoleswereinitiallyassignedto eitherloworhigh salinities(3and9ppt,respectively).We established experimentalsalinityswitchesatspecific developmental stages,anearlysalinityswitchatGosner stage30,andalateswitch atGosner stage38.Thereason wechosestage30andstage38forswitchpointsis because theformeriswithinthepremetamorphic period,when tadpolesgrowwithfewmorphological changesandlow plasmathyroidhormone(TH),andthelatteriswithinthe
9
Withouttadpoles(n=14)
8
7
Withtadpoles(n=37)
6 stage26only
5stage27-30
4stage31-35
stage36-40
3
2
1
0
02469 11 13 15 17 19 21 23
Salinity (ppt)
Fig.1 SalinityofpoolswithandwithoutIndianricefrog(Fejer- varyalimnocharis)tadpoles. Tadpolesappearedonlyinpoolswith salinities under12ppt,andtheycouldexperiencedifferent salinities throughoutdevelopment. Wecategorizedfourdevelopmentalperiod oftadpolesaccordingtothe oldesttadpoleswesurveyedin eachpool. Wesurveyedatotalof51pools
prometamorphic period,whentadpolesgrowwithobvious morphologicalchangesandincreasingplasmaTH(Denver
2009).Hence,weestablishedatotalofsixtreatmentsas
follows: constant low salinity (LLL), low salinity with earlyswitchtohighsalinity(LHH), lowsalinitywithlate switchtohighsalinity(LLH),constanthighsalinity(HHH), highsalinitywithearlyswitch tolowsalinity(HLL), and highsalinity withlateswitch tolowsalinity (HHL). Because highersalinityslowsdowntherateoftadpole development(Gomez-Mestreet al. 2004;WuandKam
2009),tadpolesreachedthespecificdevelopmentalstages atdifferenttimeintervals.Becausethetimerequired for animalstodevelop fromonestagetothenextisnotuni- form,but dependsonthespecificstagesand environmental conditions,thetimingofsalinityswitches variedacross treatmentsandwere determinedbyaveragedevelopmental stage. Salinity switches occurred on days 6.8±0.2 (mean±SE, n=20), 20.3±0.2 (n=20), 12.2±0.6 (n=20),and27.3±2.7(n=9),forLHH,LLH,HLL andHHL,respectively.Likewise, theaveragetadpole weight at switch points was 114±2.5, 343.1±
6.8, 94.6±4.3, and 329.8±19.1mg, for LHH, LLH, HLLandHHL,respectively.Each treatment wasreplicated
20times,eachreplicateconsistingofindividualtadpoles raised in plastic containers (length9width9height=
10.597.594.5cm) holding100mlofwater.Containers
werekeptcovered withatransparentperforated lidto reduceevaporation. Weobtainedthedifferentsaline solutionsbydissolvingCoralifescientific-grademarinesalt (Energy Savers,Carson, CA,USA)indistilledwater,and thelevelofsalinity waschecked at26°Cwithasalinity refractometer. We fed the tadpoles boiled vegetables adlibitumandchangedthewatereverythirdday.Tadpoles werekeptinincubators at26°Cundera12:12hlight:dark cycle.Wemonitored tadpolesurvivalandwatersalinity daily,adjustingsalinitywhennecessary. Wemeasuredthe growthanddevelopment oftadpolesonceaweekuntil metamorphosisbystagingandweighingeachtadpoleto thenearest0.0001g.Beforeweighing,wegentlyblotted eachtadpoletoremoveexcess water.Tadpoleswerecon- sideredtohavereachedmetamorphosisatGosnerstage42, uponforelimbemergence(Gosner 1960).Atthistime,we recordedthedateandmeasuredtadpolebodysize.
Dataanalyses
WeusedtheKaplan–Meiersurvivalanalysistocompare thecurvesoftadpolessurviving tometamorphosisindif- ferenttreatments(KaplanandMeier1958). Allindividuals wereweighed andstagedweekly todeterminegrowth trajectoriesineachtreatment.Wetestedfordifferences in growthanddevelopment amongtreatmentsbyusinga repeated measures ANOVA (Potvin et al. 1990). This
analysis couldonlybeconductedoverfourtimepoints because after 3weeks tadpolesin sometreatmentshad metamorphosed.Wetestedtheassumption ofTypeH covariance(HuynhandFeldt1970)inourrepeatedmea- suresANOVAs,applyingsphericitytests(Anderson1958). Asthedatadidnotsatisfysuchan assumption,weadjusted the significancelevels for the F tests according to an epsiloncorrectionfactoroftheirdegreesoffreedom(Huynh andFeldt1976).
Larvalperiodandsizeatmetamorphosis wereheteros- cedastic,andthereforeweranked thesevariablespriorto conductingANOVAtotestfordifferences amongtreat- ments,followed byFisher LSDposthoctests.Dataanal- ysiswasconductedwithSPSS 11.0(SPSS,Chicago,IL, USA)andSAS9.2(SASInstitute,Cary,NC,USA).
Results
Survivalandmetamorphosis
Alltadpolesinitiallyassigned tolowsalinity(LLL,LLH, andLHHtreatments)survivedtometamorphosis(Fig. 2). Survivorshipwasdecreasedintadpolesinitiallyexposedto
anymorphologicalabnormalitiesduringontogenyintad- polesindifferentsalinities.
Growthanddevelopment
Growthanddevelopment oftadpoles differed significantly duringthefirst 3weeksamongtreatments(repeatedmea- sures ANOVA, treatment9time: F15,318=30.63, P\
0.0001 and F15,315=18.14, P\0.0001, respectively;
Fig.3).Earlyexposure tohighsalinityhadastrongeffect ontadpolegrowthanddevelopment.Tadpolesexposed to highsalinityearlyindevelopment grewanddeveloped moreslowlythanthosewhoseearlydevelopment occurred inlowsalinity,regardlessofwhethertheywereexposedto lowsalinitylaterinlifeornot(i.e.Lxxvs.Hxx,treat- ment9time: F3,330=72.75, P\0.0001 and F3,327=
68.30,P\0.0001,respectively;Fig.3).Onaverage,tad-
polesininitiallyhighsalinity (Hxx)gained 41%asmuch mass during the first3weeks as those in initially low salinity (Lxx). Afterthose3weeks,tadpoles intreatments withearlyexposure tohighsalinitywereinstages34–35, beforecompletetoeseparation, whereastadpolesintreat- mentsexposedtolowsalinityearlyin developmentwerein
salinity, survivalbeing95,45and30%inHLL,HHLand HHH,respectively.Thesurvivaloftadpolessignificantly differedamong theinitiallyhighsalinity treatments(log ranktest,v2 =11.78,P=0.0028,df=2).Tadpolesur- vivalinHLLwassignificantlyhigherthanthatateither constant high salinity (HHH) (v2 =8.77, P=0.0030, df=1) or HHL (v2 =11.18, P=0.0010, df=1), whereasHHHandHHLdidnotdifferfromoneanother (v2 =1.71,P=0.6790,df=1;Fig.2).Wedidnotfind
400
300
200
100
0
LLLHHH LHHHLL
LLHHHL
100
90
80
70
60
50
b
42
LLL39
LHH
36
LLH
HHH33
HLL
30
HHL
27
40
30
0
010203040506070
Time(days)
Fig.2 Survival(%)ofF.limnocharistadpolesrearedindifferent salinityregimes.Thelastdatumpointforeachtreatmentreflectsthe timeatwhichthelasttadpolemetamorphosed
07142128
Time (days)
Fig.3 Growth(a)anddevelopment(b)ofF.limnocharistadpolesin different salinity treatments.Thelastdatumpointforeachline representsthetimeatwhich thefirsttadpolemetamorphosed.Sample sizesduringthefirstthreeweekswere20pertreatment,exceptfor HHHandHHL(n=18andn=14,respectively).Samplesizein the fourthweekwas12, 13,and9forHHH,HLLandHHL,respectively. Bars±SE
stages 38–39, much closer to metamorphosis (Gosner
1960).Nonetheless, switchingtohighsalinitysignificantly reducedgrowthandsloweddowndevelopment duringthe first3weeksintadpolesinitiallyinlowsalinity(among Lxx treatments, treatment9time: F6,171=28.75, P\
0.0001 and F6,171=12.10, P\0.0001, respectively).
Extended exposure to salinity further contributed to reducedgrowth(amongHxx treatments, treatment9time: F6,147=5.42,P=0.004)butnottoinfluencedevelopment (treatment9time:F6,144=1.98,P=0.1240)intadpoles initiallyinhighsalinity.
Metamorphictraits
Thetimetoandsizeatmetamorphosis oftadpolessignif- icantly differed among treatments (ANOVA, F5,88=
14.61,P\0.0001andF5,88=11.30,P\0.0001,respec-
tively).Ininitiallylowsalinity treatments(LLL,LHH, and LLH),posthoccomparisons showedthattimetometa- morphosis oftadpolesswitchedtohighsalinityatGosner stage30(LHH)wasstatisticallysimilartothatataconstant lowsalinity(LLL),whereas timetometamorphosisof tadpolesswitchedtohighsalinityatGosnerstage38(LLH) wassignificantly shorterthanthatataconstantlowsalin- ity,indicatingadevelopmentalaccelerationinresponse to lateincreaseinsalinity(Fig.4a).Theaveragedevelop- mental acceleration was 2.4days, approximately a 9% shorterlarvalperiodthantadpoles inconstantlowsalinity. Sizeatmetamorphosisofjuveniles fromLLLwason average32%greaterthanthatofLHHindividuals,and
30%greaterthanthoseinLLH(Fig.4b),whereasLHH
andLLHdidnotdifferfromoneanother(Fig.4b).
Timetometamorphosisdidnotvaryamong treatments withinitialhighsalinity(HHH,HLL,andHHL;Fig. 4a). SizeatmetamorphosisofjuvenilesfromHHH,however, wasonaverage46%lowerthanjuvenilesfromHLL,and
31%smallerthanjuvenilesfromHHL(Fig.4b).
Discussion
Asexpected,higher salinity reduced survival,growthand development oftadpoleswhenexposureoccurredearlyin development(premetamorphosis). Somespeciesseemto avoidbreedinginpoolswithhighsalinity(Gordonetal.
1961;Haramura 2008), butevenifF.limnochariscould discriminate,theiroffspringwouldstillbeathighriskof experiencingharmfulsalinitiesasaresultofhighevapo- rationratesinthesmallcoastalrockypools inwhich they breed.Salinity stressexperiencedearlyindevelopment markedly reducedgrowthanddevelopmentofF.limno- charistadpoles,seemingly incapableofcompensatory growthuponrelease from salinitystress.Consequently,
a45
c
40c
35c
30aa
b
25
20
0
b 500
ac
ac
400
bbb
300
200
0
LLLLHHLLHHHHHLLHHL
Treatment
Fig.4 Timeto(a)andsizeatmetamorphosis (b)forF.limnocharis tadpolesindifferentsalinityregimes. Identicallettersabovebars indicatenosignificantdifferencebetweentreatments.Samplesizes were20pertreatment,exceptfortreatmentsHHH,HLL,andHHL (n=6,n=19andn=9,respectively).Bars±SE
evenifF.limnocharistadpolessurviveinitialexposuresto osmoticstress,theyarelikelytosufferincreased vulnera- bilitytootherrisks,asreduced growthandextended developmentexposesthemtoaquaticpredatorsforalonger time,putsthematriskofponddesiccation,reducestheir odds of post-metamorphic juvenile survival (Newman
1992; Alford 1999), and impacts population dynamics
(Karrakeretal.2008).
Lackofcompensatorygrowthtoovercomeearly osmoticstress
Thelongertadpoles stayedinhighsalinity, thestronger weretheadverse effects,butwithastrongpreeminenceof theconditionsexperiencedearlyindevelopment.Evenif released fromosmoticstress,tadpoles exposed tohigh salinityearlyindevelopmentcouldnotincreasegrowthand
developmental ratesenoughtomatchLLL,andmetamor- phosed laterand oftenatasmallersize(Fig.3a,b).How- ever,tadpolesreleasedfromosmotic stressearly(HLL) managedtoreachsimilarsizeatmetamorphosis thantad- polesmaintainedinlowsalinitythroughout development, althoughittooklongertoreachmetamorphosis, indicating their ability forpartialgrowthcompensation(Aliet al.
2003;Squiresetal.2010).Tadpolesexposedtohighsalinity earlyindevelopment(Hxx),orforalongperiodoftime (LHH), mayhavebeenforcedtoallocatemoreenergy to osmoregulation(Gomez-Mestre etal.2004),andconse- quentlyitmayhavetakenlongertooffsetthisincreased energyconsumption andattaintheminimumsizefor metamorphosis. WilburandCollins(1973)hypothesized thattadpolesmustattaintheminimum(threshold) size beforemetamorphosis.We hypothesizethat tadpolesof F.limnocharisatGosner stage38haveattainedthe threshold sizeformetamorphosis. MoreyandReznick (2000)demonstratedthatthethresholdsizeexistsandthatit differsamongspecies, witharangebetweenGosnerstages
35and39,andthedifferenceisprobably relatedtoadap- tationtodifferent regimesofhabitatephemerality.During the periodof Gosnerstages36–41(prometamorphosis),the endocrinesystemoftadpolesissufficientlydevelopedto adjustthedevelopmentalrateinresponsetoenvironmental variation(reviewed byDenver2009).Incontrast,tadpoles atGosnerstage30(premetamorphosis)couldnotinitiate metamorphosisafterswitching fromlowtohighsalinity (LHH),andshowed decreased growthanddevelopment rates,consistentwithpreviousstudies(Gomez-Mestreetal.
2004;Chinathamby etal.2006;WuandKam2009).
Previousstudieshaveshowncompensatory growthin tadpolesfollowingreleasefromfooddeprivation(Alford andHarris1988;Beachyetal.1999;CapellanandNicieza
2007),ponddesiccation(Denveretal.1998)andsalinity
(Squires et al. 2010). The capacity for compensatory growth mayvaryamong species ordepend onthetypeof environmentalstressencountered(CapellanandNicieza
2007).Theresponsetowaterrefillingafterhabitatdesic- cationintadpolesofScaphiopushammondii ispartially reversible,restoring thebodysizeandretardingmeta- morphosis, butthereversibilitydependsonthedevelop- mentalstageoftadpoles(Denveretal.1998).
Severallinesofevidencesuggestthatthedevelopmentof internalgillsiscriticalinenhancedsalinitytolerance.Tad- polesexperiencinglowsalinityinearlydevelopment(before Gosnerstage38)hadmuchhighersurvivalrates(100%) thantadpolesexposedtohighsalinity during thesameper- iod,eveniftheywerelaterswitchedtolowsalinity.Gillsare the main organsresponsiblefor ion and water balance intadpoles(DietzandAlvarado 1974;Uchiyamaand Yoshizawa1992;Ultschetal.1999),andtadpolesmaylack sufficientsalt-excretingabilitytocopewithhighosmotic
stressuntilinternalgillsdevelop(Chinathambyetal.2006). UchiyamaandYoshizawa(1992)suggested thattheeury- halinetadpolesofFejervaryacancrivora(Ranacancrivora) toleratedhighersalinityoncetheyhadinternalgillsthan thosestillrelying onexternalonesbecausetheformerare moreabundantinmitochondria-rich cells(MRcells), thoughtkeyinionexcretion.Concordantly, MRcellsonly appearedinRanadalmatinatadpolesonceinternalgillshad developed, butwereabsentintheirexternalgills(Brunelli etal. 2004).Shiftstohighsalinitydidnotinfluencetadpole survivalinitiallyassignedtolowsalinity,maybebecause theirgillswerealreadywelldeveloped.Therefore,thetim- ingofinternalgilldevelopmentrelativetosalinityexposure maydeterminetadpolesurvival.
Earlyexposuretosalinityprecludedadaptive developmentalplasticity
Inoursystem,initiallowsalinityconditions seemedto allowtadpolesto buildenoughcapacitytomaintainnormal development evenifexposed tohighsalinitylaterin development, althoughthismayhavebeenenergetically verycostlyasitcameattheexpense ofreducedsizeat metamorphosis (LLL vs. LHH, Fig.4). Priming fast development attheexpenseofreducedsizeattransforma- tionisconcordant withanadaptiveaccelerationofdevel- opmenttoavoidstressfulconditions(Newman 1992; Denver1997).Suchdevelopmental accelerationwaseven moremarked intheLLHtreatment,inwhichtadpoles rearedinlowsalinitythroughoutmuchoftheirdevelopment wereexposed toosmotic stressatalatestage.Tadpoles in LLHshowed theshortest timetometamorphosis,even shorterthanthosecontinuously inlowsalinity,evidencing developmentalaccelerationagainatthecostofreducedsize atmetamorphosis.Tadpolesgrowinginlowsalinityseemed tohaveattainedthethreshold sizeformetamorphosisat Gosner38,andprecipitatedmetamorphosis eitherasa neuroendocrine directresponsetoincreasedsalinity,or indirectlywhengrowthwasadversely impactedbyhigh salinity(Werner 1986). Suchshiftsinmetamorphictiming mayprovideameansfortadpolestoadapttotheunpre- dictablenatureofrockpools,whichfrequently experience largeandfastfluctuationsinsalinity,duetowavespray, evaporation, orrainfall(WuandKam2009). Nonetheless, earlyexposuretohighsalinityprecluded adaptiveacceler- ationofdevelopment, alwayscausingdelayedmetamor- phosisrelativetothoseinlowsalinityearlyindevelopment. Thisresult highlightsthefactthatstress experiencedearly inontogeny maycondition growthanddevelopmental tra- jectoriestothepoint oflimitingthepotentialforadaptive plasticresponsesinlaterstages.
In conclusion, our results indicate that the salinity experiencedintheearlystageswasimportantforsurvival,
growthanddevelopmentofF.limnocharistadpoles.Fur- thermore,theeffects ofosmoticstressongrowth were partiallyreversible butthoseondevelopmentwereirre- versibleevenafterreleasefromstress.However, F.lim- nocharistadpolescanacceleratedevelopmentinresponse toincreasedwatersalinityifexposed duringprometamor- phosis.Iflowsalinityallowsadequate growthearlyin development, tadpoles canquickly attainaminimumsize formetamorphosis,whichwould enablethemtoaccelerate developmentifconditions deteriorated(e.g.,salinity increased).Conversely, earlyexposuretoosmoticstress reducesgrowth anddevelopmentalratessothattadpoles cannolongerbuildupenergeticreserves required to acceleratemetamorphosis.Wehypothesizethatosmoreg- ulationunderosmotic stressmaytakeanimportant meta- bolic toll that impairs the accumulation of body fat requiredtoundergoacceleratedmetamorphosis.Thisstudy highlightstheimportance oftheenvironmental conditions experiencedearlyindevelopment, andhowtheycancrit- icallyimpactlifehistorytraits.
Acknowledgments ThisstudywassupportedbyaNationalScience CouncilGrant(NSC95-2311-B-029-006-MY3)toYCK.Wethank theStationoftheEastCoastNationalScenicAreaAdministrationof GreenIslandforlogisticsupport, andC.S.Wu,T.L.LinandR.F. Chaoforadministrativeandfieldassistance;andJamesR.Voneshfor commentsonanearlydraftofthispaper.
References
Alexander PS, Alcala AC, Wu DY (1979) Annual reproductive patterninthericefrogRanal.limnocharisinTaiwan.JAsian Ecol1:68–78
AlfordRA(1999)Ecology:resourceuse,competion,andpredation.
In: McDiarmid RW, Altig R (eds) Tadpole, the biology of anuranlarvae.UniversityofChicagoPress,Chicago,pp240–
278
Alford RA,HarrisRN(1988) Effectsoflarvalgrowth historyon anuranmetamorphosis.AmNat131:91–106
AliM,NiciezaA,WoottonRJ(2003)Compensatorygrowthinfishes:
aresponsetogrowthdepression.FishFish4:147–190
AlvarezD,NiciezaA(2002) Effectsoftemperatureandfoodquality on anuran larval growth and metamorphosis. Funct Ecol
16:640–648
AndersonTW(1958)Anintroduction tomultivariatestatistical analysis.Wiley,NewYork
BalinskyJB(1981)Adaptationofnitrogenmetabolismtohyperos-
moticenvironmentinamphibia.JExpZool215:335–350
BeachyCK,SurgesTH,ReyesM(1999)Effectsofdevelopmental andgrowthhistoryonmetamorphosis inthegraytreefrog,Hyla versicolor(Amphibia,Anura).JExpZool283:522–530
BenardMF(2004)Predator-inducedphenotypicplasticityinorgan- isms with complexlife histories.Annu Rev Ecol Evol Syst
35:651–673
BervenKA(1990)Factorsaffectingpopulationfluctuationsinlarval andadultstagesofthewoodfrog(Rana sylvatica).Ecology
71:1599–1608
BrunelliE,PerrottaE,TripepiS(2004)Ultrastructure anddevelop- mentofthegillsinRanadalmatina(Amphibia, Anura). Zoomorphology123:203–211
CapellanE,NiciezaAG(2007) Nonequivalenceofgrowth arrest inducedbypredation riskorfoodlimitation:contextdependent compensatory growth in anuran tadpoles. J Anim Ecol
76:1026–1035
ChelgrenND,Rosenberg DK,HeppellSS,GitelmanA(2006) Carryover aquaticeffectsonsurvival ofmetamorphicfrogs duringpondemigration.EcolAppl16:250–261
Chinathamby K,ReinaRD,BaileyPCE,LeesBK(2006)Effectsof salinityonthesurvival,growthanddevelopment oftadpolesof thebrowntreefrog,Litoriaewingii.AusJZool54:97–105
ChristyMT,DickmanCR(2002)Effectsofsalinityontadpolesof greenandgoldenbellfrog(Litoriaaurea). AmphibiaReptilia
23:1–11
DeBlockM,StoksR(2005)Fitnesseffectsfromeggto reproduction:
bridgingthelifehistorytransition.Ecology86:185–197
DenverRJ(1997)Proximatemechanisms ofphenotypicplasticityin amphibianmetamorphosis.AmZool37:172–184
DenverRJ(2009)Endocrinologyofcomplexlifecycles:amphibians.
In:PfaffD,ArnoldA,EtgenA,Fahrbach S,MossR,RubinR (eds)Hormones, brainandbehavior,2ndedn.Elsevier,San Diego,pp707–744
DenverRJ,MirhadiN,PhillipsM(1998)Adaptive plasticityin amphibianmetamorphosis:responseofScaphiopushammondii tadpolestohabitatdesiccation.Ecology79:1859–1872
DenverRJ,GlennemeierKA,BoorseGC(2002)Endocrinologyof complexlifecycles: amphibians.In:PfaffD,ArnoldA,EtgenA, FahrbachS,MossR,RubinR(eds)Hormones, brainand behavior.Elsevier,SanDiego,pp469–513
DietzTH,Alvarado RH(1974)NaandCltransport acrossgill chamberepitheliumofRanacatesbeianatadpoles.Am JPhysiol
226:764–770
DuellmanWE,TruebL(1994)Biologyof amphibians.McGraw-Hill, NewYork
Gomez-Mestre I,TejedoM(2003)Localadaptationofananuran amphibians to osmotically stressful environments. Evolution
57:1889–1899
Gomez-Mestre I,TejedoM,RamayoR,EstepaJ(2004)Develop- mentalalterationsandosmoregulatory physiologyoflarval anuranunderosmoticstress.PhysiolBiolZool77:267–274
Gomez-MestreI,SaccoccioVL,Iijima T, CollinsEM,RosenthalGG, Warkentin K(2010)Theshapeofthingstocome:linking developmentalplasticitytopostmetamorphicmorphology in anurans.JEvolBiol23:1364–1373
GordonMS,Schmidt-Nielsen K,KellyHM(1961)Osmoticregula- tion in the crab-eating frog (Rana cancrivora). J Exp Biol
38:659–678
GosnerKL(1960)Asimplifiedtableforstaginganuranembryosand larvaewithnotesonidentification.Herpetologica16:183–190
Haramura T(2008)Experimentallytestofspawningsiteselectionby Buergeriajaponica(Anura:Rhacophoridae) inresponseto salinitylevel.Copeia2008:64–67
HensleyFR (1993)Ontogeneticlossof phenotypicplasticityofageat metamorphosis.Ecology74:2405–2412
HuynhH,FeldtLS(1970)Conditionsunderwhichmeansquareratios
inrepeated measurementsdesignshaveexact F-distributions. JAmStatAssoc65:1582–1589
HuynhH, Feldt LS (1976)Estimation of the Boxcorrectionfor
degreesoffreedomfromsampledatainrandomizedblockand split-plotdesigns.JEducBehavStat1:69–82
KaplanEL,MeierP(1958)Nonparametricestimationfromincom- pleteobservations.JAmStatAssoc53:457–481
KarrakerNE,GibbsJP,VoneshJR(2008)Impactsofroaddeicing salt on the demographyof vernalpool-breedingamphibians. EcolAppl18:724–734
KishidaO,TrussellGC,MougiA,NishimuraK(2010)Evolutionary
ecologyofinduciblemorphologicalplasticityinpredator–prey
interaction:towardthepracticallinkswithpopulationecology. PopulEcol52:37–46
MetcalfeNB,MonaghanP(2001)Compensationfora badstart: grow now,paylater?TrendsEcolEvol16:254–260
MoreyS,ReznickD(2000)Acomparativeanalysisofplasticityin
larvaldevelopmentinthreespeciesofspadefoottoads.Ecology
81:1736–1749
NewmanRA(1992)Adaptiveplasticityinamphibianmetamorphosis.
Bioscience42:671–678
NiCC(2003)Off-shoreIslandsofTaiwan.WalkerCulture,Taipei
Pechenik JA(2006)Larvalexperienceandlatenteffects—metamor- phosisisnotanewbeginning.IntegrCompBiol46:323–333
PotvinC,LechowiczMJ,TardifS(1990)Thestatisticalanalysisof
ecophysiological response curves obtained from experiments involvingrepeatedmeasures.Ecology71:1389–1400
RoseCS(2005)Integrating ecologyanddevelopmentalbiologyto explainthetimingoffrogmetamorphosis.TrendsEcolEvol
20:129–135
RudolfVHW,Ro¨delMO(2007)Phenotypicplasticityandoptimal timingofmetamorphosis underuncertaintimeconstraints.Evol Ecol21:121–142
Semlitsch RD,ScottDE,Pechmann JHK(1988)Timeandsizeat metamorphosisrelatedtoadultfitnessinAmbystomatalpoideum. Ecology69:184–192
SilleroN,RibeiroR(2010)Reproduction ofPelophylaxpereziin brackishwaterinPorto(Portugal).HerpetolNotes3:337–340
SmithDC(1987)Adultrecruitmentinchorusfrogs:effectsofsize anddateatmetamorphosis.Ecology68:344–350
Squires ZE,BaileyPCE,ReinaRD,Wong BBM(2010) Compen- satorygrowthintadpoles aftertransient salinitystress.Mar FreshwRes61:219–222
Sumida M,KotakiM,IslamMM,Djong TH,IgawaT,KondoY, MatsuiM,AnslemDS,Khonsue W,Nishioka M(2007) Evolutionaryrelationships andreproductiveisolatingmecha- nisms in the Rice Frog (Fejervarya limnocharis) species complex fromSriLanka,Thailand,TaiwanandJapan,inferred frommtDNAgenesequences,allozymes,andcrossingexperi- ments.ZoolSci24:547–562
UchiyamaM,YoshizawaH(1992)Salinitytolerenceandstructureof externalandinternalgillsintadpoles ofthecrab-eatingfrog, Ranacancrivora.CellTissueRes267:35–44
UltschGR,BradfordDF,FredaJ(1999)Physiology,copingwiththe environment.In:McDiarmidRW,AltigR(eds)Tadpoles,the biologyofanuranlarvae.University ofChicagoPress,Chicago, pp189–214
VoneshJR,Warkentin KM(2006)Oppositeshiftsinsizeat metamorphosisinresponsetolarvalandmetamorphpredators. Ecology87:556–562
WernerEE(1986)Amphibianmetamorphosis:growthrate,predation riskandtheoptimalsizeattransformation.AmNat128:319–341
Wilbur HM, Collins JP (1973) Ecological aspects of amphibians
metamorphosis.Science182:1305–1314
WuCS,KamYC(2009)Effectsofsalinityonsurvival, growth, development,andmetamorphictraitsofFejervaryalimnocharis tadpoleslivinginbrackishwater.ZoolSci26:476–482
YangYR(1998)AfieldguidetothefrogsandtoadsofTaiwan.
ChinesePhotographyAssociation,Taipei