INTRODUCTION TO STOCHASTIC INTEGRATION
1. Introduction
i. Integrals
ii. Random walks
2. Brownian Motion
i. Definition of Brownian motion
ii. Simple properties of Brownian motion
iii. Wiener integral
iv. Conditional expectation
v. Martingales
vi. Series expansion of Wiener integrals
3. Constructions of Brownian motion
i. Wiener space
ii. Borel-Cantelli lemma
iii. Kolgomorov’s extension and continuity theorems
iv. Levy’s interpolation method
4. Stochastic Integrals
i. Stochastic integrals
ii. Simple examples of stochastic integrals
iii. Doob submartingale inequality
iv. Stochastic processes defined by Ito integrals
v. Riemann sums and stochastic integrals
5. An extension of stochastic integrals
i. A larger class of integrands
ii. The key lemma
iii. General stochastic integrals
iv. Stopping times
v. Associated stochastic processes
6. Stochastic integrals for martingales
i. Poisson processes
ii. Predictable stochastic processes
iii. Doob-Mayer decomposition theorem
iv. Martingales as integrators
v. Extension for integrands
7. The Ito Formula
i. Ito’s formula in the simplest form
ii. Proof of Ito’s formula
iii. Ito’s formula slightly generalized
iv. Ito’s formula in the general form
v. Multi-dimensional Ito’s formula
vi. Ito’s formula for martingales
8. Applications of the Ito Formula
i. Evaluation of stochastic integrals
ii. Decomposition and compensators
iii. Stratonovich integral
iv. Levy’s characterization theorem
v. Multidimensional Brownian motions
vi. Tanaka’s formula and local time
vii. Exponential processes
viii. Transformation of probability measures
ix. Girsanov theorem
9. Multiple Wiener-Ito integrals
i. Double Wiener-Ito integrals
ii. Hermite polynomials
iii. Homogeneous chaos
iv. Orthonormal basis for homogeneous chaos
v. Multiple Wiener-Ito integrals
vi. Wiener-Ito theorem
vii. Representation of martingales
10. Stochastic differential equations
i. Definition and some examples
ii. Existence and uniqueness theorem
iii. Properties of the solution
iv. Semigroups and diffusion processes
v. Approximation of the solution