Supporting Information

Insights into tetracycline adsorption onto kaolinite and montmorillonite: Experiments and modeling

Yanping Zhao1, Xueyuan Gu2, Shiyin Li1, Ruiming Han1, Guoxiang Wang1*

Affiliations: 1 Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geographical Science, Nanjing Normal University, Nanjing 210023, China, 2 State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

* Corresponding author ()

Number of pages: 12

Number of figures: 4

Number of tables: 5

Fig. S1–Structure of tetracycline (TC).The regions framed by dashed lines represent the structural moieties associated with the three acidic dissociation constants (pKa).

Fig. S2–Speciation of TC under different pHs.

Fig. S3 –ATR-FTIR difference spectra of TC on goethite surface at different pH values (indicated).

Fig. S4–Modeled surface speciation diagrams of TC, with different initial concentration, adsorption onto kaolinite (KT, 0.023, 0.045 and 0.11 mM) and montmorillonite (MT, 0.11 and 0.23 mM), in 0.01 M NaNO3 solution, 25 °C, at 1 g L-1 and 0.2 g L-1, respectively. Symbols are experimental data and lines are fitted using the parameters in Table 1.

Table. S1 -A summary of the FTIR vibration characteristics of the TC adsorbed onto soil minerals

Literature / Wavenumbers (cm-1)
1668
(a) / 1608
(b) / 1579
(c) / 1505
(d) / 1448
(e) / 1400
(f) / 1267
(g) / 1229
(h) / 1186
(i)
[1] / C=O
(amide) / C=O
(ring A) / C=O
(ring C) / -NH / C-C / - / - / - / -
[2] / -NH2 / C=O
(ring A) / C=O
(ring C) / -NH / C-C / -CH3 / C-N / - / -
[3] / - / -NH / OH10,12 / -NH / - / -NH / - / - / -
[4] / C=O
(amide) / C=C / -NH / - / C-C / - / - / - / -
[5] / C=O
(amide) / C=O
(ring A) / C=O
(ring C) / -NH2 / - / - / - / - / -
[6] / TC vibrations were much weaker compared to those sorbed to montmorillonite
[7] / C=O
(amide) / C=C / -NH / - / -CH3 / - / C-N / - / -
[8] / C=O
(amide) / -NH2 / C=C / - / -CH3 / - / C-N / C-N / C-O
This study / amideC=O / C=O
(ring A) / C=O
(ring C) / C=C / -NH / -CH3 / C-N / C-N / C-O

Table. S2–A summary of previous studies on surface characteristics, surface protonation and electrolyte adsorption equilibrium constants, and capacitances for kaolinite

salt / AS
m2 g-1 / logK0a1 / logK0a2 / logK
X-.H+ / logK0cation / logK0
anion / C1
F m-2 / C2
F m-2 / Adsorptiondata / Parameterestimation / SCM
NaNO3 / 13.6 / 2.1 / -8.1 / 2.1 / - / - / - / - / [9] / [10] / DLM
NaNO3 / 22.0 / 2.77 / -6.77 / 7.30 / -6.21 / -1.0 / 2.4 / 0.2 / [11] / [11] / TLM
CaCl2 / 23.6 / - / - / - / - / - / 1.5 / 5.0 / [12-14] / [13] / CD-M
NaCl / - / 5.0 / -11.2 / - / -8.6 / 7.5 / 1.2 / 0.2 / [15-18] / [17, 18] / TLM
NaNO3 / 12.3 / 2.77 / -6.77 / 6.21 / - / - / 2.4 / 0.2 / [19, 20] / [20] / TLM
NaNO3 / 12.0 / 6.52 / -11.1 / - / -9.06 / 8.52 / 2.0 / 0.2 / [21, 22] / [22] / TLM
NaCl / 8.58 / 4.23 / -6.86 / - / -2.35 / 5.50 / 3.8 / 0.2 / [23] / [23] / TLM
KCl / 23.6 / 7.89 / -9.05 / - / -9.20 / 7.90 / 1.0 / 0.2 / [24] / [25, 26] / TLM
KClO4 / 25.0 / 5.70 / -11.4 / - / -9.15 / -1.75 / 1.2-2.4 / 0.2 / [27] / [28, 29] / TLM

Table. S3– A summary of previous studies on surface characteristics, surface protonation and electrolyte adsorption equilibrium constants, and capacitances for montmorillonite

salt / AS
m2 g-1 / logK0a1 / logK0a2 / logK
X-.H+ / logK0
cation / logK0
anion / C1
F m-2 / C2
F m-2 / Adsorptiondata / Parameterestimation / SCM
NaCl / - / 5.0 / -11.2 / - / -8.6 / 7.5 / 1.2 / 0.2 / [15-18] / [17, 18] / TLM
CaCl2 / 23.6 / - / - / - / - / - / 1.5 / 5.0 / [12-14] / [13] / CD-M
CaCl2, NaCl / 80 / 7.5 / -10.0 / - / - / - / 1.4 / 0.2 / [30] / [30] / TLM
NaCl / 760 / - / - / - / - / - / 1.27 / 0.94 / [31] / [31] / TLM
NaCl / - / - / - / - / - / - / 1-2 / 0.55 / [32] / [32] / TLM

1

Table. S4-Species/component matrix used in FITEQL for the batch adsorption data to calculate TC binding constants on kaolinite

Species / Components
PSI(0) / PSI(beta) / PSI(d) / H2TC0 / ≡SOH0 / ≡X-∙Na+ / Na+ / NO3- / H+
1 / H3TC+ / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / 1
2 / H2TC0 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / 0
3 / HTC- / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / -1
4 / TC2- / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / -2
5 / ≡SOH2+ / 1 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 1
6 / ≡SOH0 / 0 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0
7 / ≡SO- / -1 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / -1
8 / ≡SO-∙Na+ / -1 / 1 / 0 / 0 / 1 / 0 / 1 / 0 / -1
9 / ≡SOH2+∙NO3- / 1 / -1 / 0 / 0 / 1 / 0 / 0 / 1 / 1
10 / ≡X-∙Na+ / -1 / 1 / 0 / 0 / 0 / 1 / 0 / 0 / 0
11 / ≡X-∙H+ / -1 / 1 / 0 / 0 / 0 / 1 / -1 / 0 / 1
12 / ≡SOH0∙H2TC0 / 0 / 0 / 0 / 1 / 1 / 0 / 0 / 0 / 0
13 / ≡SOH0∙HTC- / 0 / -1 / 0 / 1 / 1 / 0 / 0 / 0 / -1
14 / ≡X-∙ H3TC+ / -1 / 1 / 0 / 1 / 0 / 1 / -1 / 0 / 1
15 / ≡X-∙ H2TC0 / -1 / 0 / 0 / 1 / 0 / 1 / -1 / 0 / 0
16 / OH- / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / -1
17 / H+ / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 1

Table. S5-Species/component matrix used in FITEQL for the batch adsorption data to calculate TC binding constants on montmorillonite

Species / Components
PSI(0) / PSI(beta) / PSI(d) / H2TC0 / ≡SOH0 / ≡X-∙Na+ / Na+ / NO3- / H+
1 / H3TC+ / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / 1
2 / H2TC0 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / 0
3 / HTC- / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / -1
4 / TC2- / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0 / -2
5 / ≡SOH2+ / 1 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 1
6 / ≡SOH0 / 0 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / 0
7 / ≡SO- / -1 / 0 / 0 / 0 / 1 / 0 / 0 / 0 / -1
8 / ≡SO-∙Na+ / -1 / 1 / 0 / 0 / 1 / 0 / 1 / 0 / -1
9 / ≡SOH2+∙NO3- / 1 / -1 / 0 / 0 / 1 / 0 / 0 / 1 / 1
10 / ≡X-∙Na+ / -1 / 1 / 0 / 0 / 0 / 1 / 0 / 0 / 0
11 / ≡X-∙H+ / -1 / 1 / 0 / 0 / 0 / 1 / -1 / 0 / 1
12 / ≡X-∙ H3TC+ / -1 / 1 / 0 / 1 / 0 / 1 / -1 / 0 / 1
13 / ≡X-∙ H2TC0 / -1 / 0 / 0 / 1 / 0 / 1 / -1 / 0 / 0
14 / ≡SOH0∙HTC- / 0 / -1 / 0 / 1 / 1 / 0 / 0 / 0 / -1
15 / OH- / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / -1
16 / H+ / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 1

Reference

[1] M.E. Parolo, M.C. Savini, J.M. Valles, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Applied Clay Science, 40 (2008) 179-186.

[2] M.E. Parolo, M.J. Avena, G. Pettinari, I. Zajonkovsky, J.M. Valles, M.T. Baschini, Antimicrobial properties of tetracycline and minocycline-montmorillonites, Applied Clay Science, 49 (2010) 194-199.

[3] P.H. Chang, Z.H. Li, W.T. Jiang, J.S. Jean, Adsorption and intercalation of tetracycline by swelling clay minerals, Applied Clay Science, 46 (2009) 27-36.

[4] P.H. Chang, J.S. Jean, W.T. Jiang, Z.H. Li, Mechanism of tetracycline sorption on rectorite, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 339 (2009) 94-99.

[5] Z.H. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction between tetracycline and smectite in aqueous solution, Journal of Colloid and Interface Science, 341 (2010) 311-319.

[6] P.-H. Chang, Z. Li, T.-L. Yu, S. Munkhbayer, T.-H. Kuo, Y.-C. Hung, J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline from water by palygorskite, Journal of Hazardous Materials, 165 (2009) 148-155.

[7] P. Kulshrestha, R.F. Giese, D.S. Aga, Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil, Environmental Science & Technology, 38 (2004) 4097-4105.

[8] L. Aristilde, C. Marichal, J. Miehe-Brendle, B. Lanson, L. Charlet, Interactions of Oxytetracycline with a Smectite Clay: A Spectroscopic Study with Molecular Simulations, Environmental Science & Technology, 44 (2010) 7839-7845.

[9] C.J. Landry, C.M. Koretsky, T.J. Lund, M. Schaller, S. Das, Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite, Geochim. Cosmochim. Acta, 73 (2009) 3723-3737.

[10] D.A. Sverjensky, N. Sahai, Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water, Geochim. Cosmochim. Acta, 60 (1996) 3773-3797.

[11] M.E. Essington, J. Lee, Y. Seo, Adsorption of Antibiotics by Montmorillonite and Kaolinite, Soil Sci. Soc. Am. J., 74 (2010) 1577-1588.

[12] N. Devau, E. Le Cadre, P. Hinsinger, B. Jaillard, F. Gerard, Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches (vol 24, pg 2163, 2009), Appl. Geochem., 25 (2010) 1094-1095.

[13] K. Lackovic, M. Angove, R. Wells, B.J. Johnson, Modeling the adsorption of Cd(II) onto Muloorina illite and related clay minerals, Journal of Colloid and Interface Science, 257 (2003) 31-40.

[14] N. Devau, P. Hinsinger, E. Le Cadre, B. Colomb, F. Gerard, Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils, Geochim. Cosmochim. Acta, 75 (2011) 2980-2996.

[15] S. Goldberg, Inconsistency in the triple layer model description of ionic strength dependent boron adsorption, Journal of Colloid and Interface Science, 285 (2005) 509-517.

[16] S. Goldberg, N.J. Kabengi, Bromide Adsorption by Reference Minerals and Soils, Vadose Zone Journal, 9 (2010) 780-786.

[17] R. Sprycha, Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential, Journal of Colloid and Interface Science, 127 (1989) 1-11.

[18] R. Sprycha, Electrical double layer at alumina/electrolyte interface: II. Adsorption of supporting electrolyte ions, Journal of Colloid and Interface Science, 127 (1989) 12-25.

[19] D. Sarkar, M.E. Essington, K.C. Misra, Adsorption of mercury(II) by kaolinite, Soil Sci. Soc. Am. J., 64 (2000) 1968-1975.

[20] C.P. Huang, Adsorption of inorganics at solid-liquid interfaces, Ann Arbor Science, (1981).

[21] R. Weerasooriya, H.U.S. Wickramarathna, Modeling anion adsorption on kaolinite, Journal of Colloid and Interface Science, 213 (1999) 395-399.

[22] R. Weerasooriya, H.U.S. Wickramarathna, H. Dharmagunawardhana, Colloid Polym. Sci., 144 (1998) 267.

[23] D.B. Ward, P.V. Brady, Effect of Al and organic acids on the surface chemistry of kaolinite, Clays Clay Miner., 46 (1998) 453-465.

[24] L.M. He, L.W. Zelazny, V.C. Baligar, K.D. Ritchey, D.C. Martens, Ionic strength effects on sulfate and phosphate adsorption on gamma-alumina and kaolinite: Triple-layer model, Soil Sci. Soc. Am. J., 61 (1997) 784-793.

[25] C.P. Huang, W.J. Stumm, Specific adsorption of cations on hydrous γ-Al2O3 Journal of Colloid and Interface Science, 43 (1973) 409-420.

[26] R.O. James, G.A. Parks, Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties, Surface Colloid Science, 12 (1982) 119-216.

[27] S.P.N. Singh, S.V. Mattigod, MODELING BORON ADSORPTION ON KAOLINITE, Clays Clay Miner., 40 (1992) 192-205.

[28] J.A. Davis, R.O. James, J.O. Leckie, Journal of Colloid and Interface Science, 63 (1978).

[29] A.C. Riese, Adsorption of radium and thorium onto quartz and kaolinite, a comparison of solution~surface equilibria models, (1982).

[30] M. Gutierrez, H.R. Fuentes, A mechanistic modeling of montmorillonite contamination by cesium sorption, Applied Clay Science, 11 (1996) 11-24.

[31] C. Tournassat, Y. Chapron, P. Leroy, M. Bizi, F. Boulahya, Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1 M NaCl-montmorillonite system, Journal of Colloid and Interface Science, 339 (2009) 533-541.

[32] J. Goncalves, P. Rousseati-Gueutin, Molecular-scale model for the mass density of electrolyte solutions bound by clay surfaces: Application to bentonites, Journal of Colloid and Interface Science, 320 (2008) 590-598.

1