Chapter 6

6.1 Introduction

Review

Hille, B., 2001. Ion channels of excitable membranes. Sinauer Associates, Inc. Sunderland, MA.

Hille, B., Armstrong, C. M., and MacKinnon, R., 1999. Ion channels: from idea to reality. Nat. Med. v. 5 p. 1105–1109.

6.2 Channels and carriers are the main types of membrane transport proteins

Research

Jentsch, T. J., Hübner, C. A., and Fuhrmann, J. C., 2004. Ion channels: Function unravelled by dysfunction. Nat. Cell Biol. v. 6 p. 1039–1047.

6.5 K+ channels catalyze selective and rapid ion permeation

Review

Berneche, S., and Roux, B., 2001. Energetics of ion conduction through the K+ channel. Nature v. 414 p. 73–77.

Choe, S., 2002. Potassium channel structures. Nat. Rev. Neurosci. v. 3 p. 115–121.

Hille, B., Armstrong, C. M., and MacKinnon, R., 1999. Ion channels: from idea to reality. Nat. Med. v. 5 p. 1105–1109.

Miller, C., 2000. An overview of the potassium channel family. Genome Biol. v. 1 p. R0004.

Morais-Cabral, J. H., Zhou, Y., and MacKinnon, R., 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature v. 414 p. 37–42.

Research

Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science v. 280 p. 69–77.

Gutman, G. A., et al., 2003. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. v. 55 p. 583–586.

Zhou, Y., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R., 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature v. 414 p. 43–48.

6.6 Different K+ channels use a similar gate coupled to different activating or inactivating mechanisms

Review

Choe, S., 2002. Potassium channel structures. Nat. Rev. Neurosci. v. 3 p. 115–121.

Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R., 2002. The open pore conformation of potassium channels. Nature v. 417 p. 523–526.

Jiang, Y., Ruta, V., Chen, J., Lee, A., and MacKinnon, R., 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature v. 423 p. 42–48.

Kullmann, D. M., Rea, R., Spauschus, A., and Jouvenceau, A., 2001. The inherited episodic ataxias: how well do we understand the disease mechanisms? Neuroscientist v. 7 p. 80–88.

Tristani-Firouzi, M., and Sanguinetti, M. C., 2003. Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J. Mol. Cell. Cardiol. v. 35 p. 27–35.

Research

Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R., 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature v. 417 p. 515–522.

Long, S. B., Campbell, E. B., and MacKinnon, R., 2005. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science v. 309 p. 903–908.

Long, S. B., Campbell, E. B., and MacKinnon, R., 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science v. 309 p. 897–903.

Zhou, Y., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R., 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature v. 414 p. 43–48.

6.7 Voltage-dependent Na+ channels are activated by membrane depolarization and translate electrical signals

Review

Hondeghem, L. M., and Katzung, B. G., 1977. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta v. 472 p. 373–398.

Vilin, Y. Y., and Ruben, P. C., 2001. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. v. 35 p. 171–190.

Yu, F. H., and Catterall, W. A., 2003. Overview of the voltage-gated sodium channel family. Genome Biol. v. 4 p. 207–207.

Research

Chiamvimonvat, N., Pérez-García, M. T., Ranjan, R., Marban, E., and Tomaselli, G. F., 1996. Depth asymmetries of the pore-lining segments of the Na+ channel revealed by cysteine mutagenesis. Neuron v. 16 p. 1037–1047.

Isom, L. L., Ragsdale, D. S., De Jongh, K. S., Westenbroek, R. E., Reber, B. F., Scheuer, T., and Catterall, W. A., 1995. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell v. 83 p. 433–442.

Kellenberger, S., Scheuer, T., and Catterall, W. A., 1996. Movement of the Na+ channel inactivation gate during inactivation. J. Biol. Chem. v. 271 p. 30971–30979.

Mitrovic, N., George, A. L., and Horn, R., 2000. Role of domain 4 in sodium channel slow inactivation. J. Gen. Physiol. v. 115 p. 707–718.

Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A., 1996. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA v. 93 p. 9270–9275.

Rohl, C. A., Boeckman, F. A., Baker, C., Scheuer, T., Catterall, W. A., and Klevit, R. E., 1999. Solution structure of the sodium channel inactivation gate. Biochemistry v. 38 p. 855–861.

Stühmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Yahagi, N., Kubo, H., and Numa, S., 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature v. 339 p. 597–603.

6.8 Epithelial Na+ channels regulate Na+ homeostasis

Review

Kellenberger, S., and Schild, L., 2002. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. v. 82 p. 735–767.

Research

Bruns, J. B., Hu, B., Ahn, Y. J., Sheng, S., Hughey, R. P., and Kleyman, T. R., 2003. Multiple epithelial Na+ channel domains participate in subunit assembly. Am. J. Physiol. Renal Physiol. v. 285 p. F600–F609.

Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., and Rossier, B. C., 1994. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature v. 367 p. 463–467.

Chang, S. S., et al., 1996. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat. Genet. v. 12 p. 248–253.

Hansson, J. H., Nelson-Williams, C., Suzuki, H., Schild, L., Shimkets, R., Lu, Y., Canessa, C., Iwasaki, T., Rossier, B., and Lifton, R. P., 1995. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat. Genet. v. 11 p. 76–82.

Palmer, L. G., and Andersen, O. S., 1989. Interactions of amiloride and small monovalent cations with the epithelial sodium channel. Inferences about the nature of the channel pore. Biophys. J. v. 55 p. 779–787.

Reif, M. C., Troutman, S. L., and Schafer, J. A., 1986. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J. Clin. Invest. v. 77 p. 1291–1298.

6.9 Plasma membrane Ca2+ channels activate intracellular functions

Review

Carafoli, E., 2003. The calcium-signalling saga: tap water and protein crystals. Nat. Rev. Mol. Cell Biol. v. 4 p. 326–332.

Sather, W. A., and McCleskey, E. W., 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. v. 65 p. 133–159.

Research

Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J. F., and Tsien, R. W., 1995. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron v. 15 p. 1121–1132.

Erickson, M. G., Liang, H., Mori, M. X., and Yue, D. T., 2003. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron v. 39 p. 97–107.

Hess, P., and Tsien, R. W., 1984. Mechanism of ion permeation through calcium channels. Nature v. 309 p. 453–456.

Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., and Yue, D. T., 2003. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron v. 39 p. 951–960.

Lipkind, G. M., and Fozzard, H. A., 2003. Molecular modeling of interactions of dihydropyridines and phenylalkylamines with the inner pore of the L-type Ca2+ channel. Mol. Pharmacol. v. 63 p. 499–511.

Serysheva, I. I., Ludtke, S. J., Baker, M. R., Chiu, W., and Hamilton, S. L., 2002. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA v. 99 p. 10370–10375.

Wu, X. S., Edwards, H. D., and Sather, W. A., 2000. Side chain orientation in the selectivity filter of a voltage-gated Ca2+ channel. J. Biol. Chem. v. 275 p. 31778–31785.

Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F., and Tsien, R. W., 1993. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature v. 366 p. 158–161.

6.10 Cl– channels serve diverse biological functions

Review

Bretag, A. H., 1987. Muscle chloride channels. Physiol. Rev. v. 67 p. 618–724.

Ellison, D. H., 2000. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am. J. Physiol. Renal Physiol. v. 279 p. F616–F625.

Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A., 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. v. 82 p. 503–568.

Research

Accardi, A., and Miller, C., 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature v. 427 p. 803–807.

Birkenhäger, R., et al., 2001. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat. Genet. v. 29 p. 310–314.

Dutzler, R., Campbell, E. B., and MacKinnon, R., 2003. Gating the selectivity filter in ClC chloride channels. Science v. 300 p. 108–112.

Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T., and MacKinnon, R., 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature v. 415 p. 287–294.

Koch, M. C., Steinmeyer, K., Lorenz, C., Ricker, K., Wolf, F., Otto, M., Zoll, B., Lehmann-Horn, F., Grzeschik, K. H., and Jentsch, T. J., 1992. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science v. 257 p. 797–800.

Kornak, U., Kasper, D., Bösl, M. R., Kaiser, E., Schweizer, M., Schulz, A., Friedrich, W., Delling, G., and Jentsch, T. J., 2001. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell v. 104 p. 205–215.

Lloyd, S. E., et al., 1996. A common molecular basis for three inherited kidney stone diseases. Nature v. 379 p. 445–449.

Miller, C., and White, M. M., 1984. Dimeric structure of single chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sci. USA v. 81 p. 2772–2775.

Pusch, M., Ludewig, U., Rehfeldt, A., and Jentsch, T. J., 1995. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature v. 373 p. 527–531.

Simon, D. B., et al., 1997. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat. Genet. v. 17 p. 171–178.

6.11 Selective water transport occurs through aquaporin channels

Review

Lehmann, G. L., Gradilone, S. A., and Marinelli, R. A., 2004. Aquaporin water channels in central nervous system. Curr. Neurovasc. Res. v. 1 p. 293–303.

Nielsen, S., Frøkiaer, J., Marples, D., Kwon, T. H., Agre, P., and Knepper, M. A., 2002. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. v. 82 p. 205–244.

Valenti, G., Procino, G., Tamma, G., Carmosino, M., and Svelto, M., 2005. Minireview: aquaporin 2 trafficking. Endocrinology v. 146 p. 5063–5070.

Verkman, A. S., 2005. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. v. 118 p. 3225–3232.

Research

Deen, P. M., Verdijk, M. A., Knoers, N. V., Wieringa, B., Monnens, L. A., van Os, C. H., and van Oost, B. A., 1994. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science v. 264 p. 92–95.

Harries, W. E., Akhavan, D., Miercke, L. J., Khademi, S., and Stroud, R. M., 2004. The channel architecture of aquaporin-0 at a 2.2-Å resolution. Proc. Natl. Acad. Sci. USA v. 101 p. 14045–14050.

Jung, J. S., Preston, G. M., Smith, B. L., Guggino, W. B., and Agre, P., 1994. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. v. 269 p. 14648–14654.

King, L. S., Choi, M., Fernandez, P. C., Cartron, J. P., and Agre, P., 2001. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med. v. 345 p. 175–179.

Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A., and Fujiyoshi, Y., 2000. Structural determinants of water permeation through aquaporin-1. Nature v. 407 p. 599–605.

Smith, B. L., and Agre, P., 1991. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. v. 266 p. 6407–6415.

Sui, H., Han, B. G., Lee, J. K., Walian, P., and Jap, B. K., 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature v. 414 p. 872–878.

Zeidel, M. L., Ambudkar, S. V., Smith, B. L., and Agre, P., 1992. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry v. 31 p. 7436–7440.

6.12 Action potentials are electrical signals that depend on several types of ion channels

Review

Carmeliet, E., 2004. Intracellular Ca(2+) concentration and rate adaptation of the cardiac action potential. Cell Calcium v. 35 p. 557–573.

Keating, M. T., and Sanguinetti, M. C., 2001. Molecular and cellular mechanisms of cardiac arrhythmias. Cell v. 104 p. 569–580.