Geodetic Science 894G: Advanced Topics in GPS

College of Engineering

Department of Civil and Environmental Engineering and Geodetic Science

Spring, 2005

Course Offerings Bulletin Information

GeodSci 894GGraduate3 credit hours

Wednesdays 2:30 – 4:28 pm, 216 Bolz Hall

Instructor: Dorota Brzezinska, 223 C Bolz Hall

Tel. 292-8787,

Course Description

Advanced GPS positioning algorithms and ambiguity resolution; long range kinematic GPS; use of GPS for low earth orbiter (LEO) orbit determination; remote sensing with GPS, including GPS meteorology, GPS integration with other navigation and imaging sensors (digital cameras, LIDAR);

Spring Quarter.

Distribution of Class Time:2 x 48 min classes and 1x48 min lab for 10 weeks.

Pre-requisites:GS608 or GS609, GS777 and GS650, or permission of the instructor.

Exclusions:None.

Repeatable:No.

Syllabus

  1. Future of the GPS constellation; upcoming system modernization; Galileo and GLONASS vs. GPS; DGPS status and future.
  2. Advanced GPS algorithms for medium to long-range kinematic positioning; batch least squares and Kalman filter approaches; single base vs. multi-base station approach; virtual reference station (VRS) concept.
  3. Ionosphere retrieval from the permanently tracking networks and optimal modeling for RTK processing.
  4. Carrier phase ambiguity resolution concepts and methods, including on-the-fly (OTF) methods; single epoch vs. multiple epoch solution; ambiguity verification test.
  5. GPS as a tool in geophysics and geodynamics; observation equation including the global geodynamics parameters; estimation of tropospheric refraction, satellite and receiver clock estimation, earth rotation estimation.
  6. Methods of GPS orbit determination with special emphasis on the OSU-developed triple difference method; International GPS Service (IGS): activities, products, and services.
  7. Use of GPS observable to the estimation of the orbits of low earth orbiter (LEO); OSU method of triple differences; the BlackJack receiver;
  8. Use of GPS occultation technique for atmospheric sounding; temperature, pressure and humidity profile retrieval; advantages and limitations; basics of the ionospheric profiling; review of the current and upcoming occultation missions (GPS/MET, CHAMP, SAC-C, GRACE, COSMIC, etc); atmospheric profiling with ground based GPS networks.
  9. Pseudo-satellites (pseudolites)/transceivers and their use in land-base navigation, precision landing (GPS pseudolites) and space navigation (GRACE);
  10. Principles of integrating GPS with GNSS (GLONASS, GALILEO) and inertial navigation; integration of GPS/INS with modern imaging sensors (digital cameras, LIDAR).

Student Learning Outcomes and Course Objectives

  1. Students will have an advanced exposure to the operational concepts of the Global Positioning System (GPS) and its importance to several areas of science and engineering.
  2. Students will be familiar with the advanced theory of various methods of positioning with satellites and the GPS system augmentation.
  3. Students will be familiar with the up-to-date research in the area of GPS applications to space science.
  4. Students will conduct independent research on selected topics; the reports will be presented in class.

Method of Evaluation

Individual Project60%

Participation in class discussion20%

Attendance20%

Primary Textbook

  1. GPS for Geodesy, A. Kleusberg and P. Teunnisen (Eds), Springer-Verlag, 1996.

Optional textbook

  1. GPS: Theory and applications, B. Parkinson, J. Spilker, Jr. (Eds), Vol. I & II, AIAA, 370 L'Enfant Promenade SW, Washington, DC20024, 1996.

References

  1. Bevis, M., et al. (1992): GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophy. Res., 97, pp. 15,787-15,801.
  2. Beutler, G. et al., (1994): Extended orbit modeling technique at the CODE Processing Center of IGS, manuscripta geodaetica, 19, pp. 367-386.
  3. Borbas, E., (1998): derivation of Precipitable Water from GPS data: an application to meteorology, Phys. Chem. Earth, Vol. 23, No. 1, pp. 87-90.
  4. Byun, S. H. and Shutz, B. E. (2001): Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode, J. of Geodesy, Vol. 75: 533-543.
  5. Colombo, O. L., (1989): The dynamics of Global Positioning orbits and the determination of precise ephemeris, J. Geophys. Re. 94(B7), pp. 9167-9182.
  6. Corazzini, T. and How, J. P. (1998): Onboard GPS signal augmentation for spacecraft formation flying, ION-GPS, CD ROM.
  7. Duan, J., et al. (1996): GPS meteorology: Direct estimation of the absolute value of precipitable water, Appl. Meteorol., 35, pp. 830-838.
  8. Eshelman, V. R., Tayler, G. L., Anderson, J. D., Fjeldbo, G., Levy, G. S., Wood, G. E. and Croft, T. A. (1977): radio science investigations with Voyager, Space Sci. Rev., 21, pp. 207-232.
  9. Grejner-Brzezinska, D.A., Kashani, I., Wielgosz, P., Smith, D.A., Spencer, P.S.J., Robertson, D.S., and Mader, G.L., (2005), The impact of the external ionospheric models on the accuracy of RTK position estimation, Proceedings of the ION 2005 National Technical Meeting, January 24–26, 2005, San Diego, California (in press)
  10. Grejner-Brzezinska, D. A., Wielgosz, P., Kashani, I., Smith, D. A., Spencer, P. S. J., Douglas S. Robertson, D. A. and Mader, G. L. (2004): An analysis of the effects of different network-based ionosphere estimation models on rover positioning accuracy, Proceedings of GNSS 2004, The International Symposium on GPS/GNSS, Sydney, Australia, 6-8 December, CD ROM.
  11. Grejner-Brzezinska, D.A., Kashani, I., and Wielgosz, P., (2005): On Accuracy and Reliability of Instantaneous Network RTK as a Function of Network Geometry, Station Separation, and Data Processing Strategy, accepted for GPS Solutions (January 2005).
  12. Grejner-Brzezinska, D. A., Kwon, J., Hong, C-K. and Bae, T-S, (2002): Performance Analysis of CHAMP Kinematic Orbit Determination, 1st CHAMP Science Meeting, January 21-25.
  13. Kwon, J. H., Grejner-Brzezinska, D. A. and Hong, C-K., (2002): Kinematic Orbit Determination of Low Earth Orbiter using Triple Differences, ION Technical Meeting, January 28-30, San Diego California, CD ROM.
  14. Grejner-Brzezinska D. A. and Toth C. K., (1999): Information Fusion for Enhanced Surface Extraction, Proceedings of ION GPS, Nashville TN, September 15-17, CD ROM.
  15. Grejner-Brzezinska D. A., Kwon J. H., Shum C. K. (2001): The Ohio State University IGS LEO/GPS Pilot Project: Status and Future Plans, Proceedings, ION GPS, Salt Lake City, September 11-14, CD ROM.
  16. Grejner-Brzezinska D. A., Ge S., Kwon J. H., Shum C. K. and Zhao C. Y. (2001): GPS/LEO Rapid Orbit Determination in Support of GPS Meteorology: Status and Future Plans, Proceedings, IAG 2001 Scientific Assembly, Budapest, Hungary September 2-7, CD ROM (also peer reviewed and accepted for IAG Symposia, to be published by Springer in Spring 2002).
  17. Toth C., Berning S., Leonard J. and Grejner-Brzezinska D. (2001): Integration of LIDAR Data with Simultaneously Acquired Digital Imagery, Proc. ASPRS Annual Conference, CD ROM.
  18. Grejner-Brzezinska D. (2001): Mobile Mapping Technology: Ten Years Later, Part I, Surveying and Land Information Systems, Vol. 61, No.2, pp. 79-94.
  19. Grejner-Brzezinska D. (2001): Mobile Mapping Technology: Ten Years Later, Part II, Surveying and Land Information Systems, Vol. 61, No.3, pp. 83-100.
  20. Toth C. and Grejner-Brzezinska D. (2000): Complementarity of LIDAR and Stereo-imagery for Enhanced Surface Extraction, Geoinformation for All, Proceedings, XIXth ISPRS Congress, July 16-23 Amsterdam, Netherlands, pp. 897-904.
  21. Toth C. and Grejner-Brzezinska D. (2000): Combining LIDAR with Digital Camera System, Launching the Geospatial Iinformation Age, Proc. ASPRS Annual Convention, Washingtom DC, May 22-26, CD-ROM.
  22. Grejner-Brzezinska D. A (1999): Direct Exterior Orientation of Airborne Imagery with GPS/INS System: Performance Analysis, Navigation, Vol. 46, No. 4, pp. 261-270.
  23. Grejner-Brzezinska D. A. and Toth C. K. (1999): “AIMS: An Alternative Tool for Coastal Mapping, International Journal for Marine Geodesy, Vol. 22, No. 2, pp.129-137 (invited).
  24. Grejner-Brzezinska D. A. and Wang J. (1998): Gravity Modeling for High-Accuracy GPS/INS Integration, Navigation, Vol. 45, No. 3, pp.209-220 (invited), also in Proceedings of ION Annual Meeting, Denver, CO, June 1-3.
  25. Grejner-Brzezinska D. A., Da, R., Toth C., (1998): GPS Error Modeling and OTF Ambiguity Resolution for High-Accuracy GPS/INS Integrated System, Journal of Geodesy, 72(11), pp. 628-638.
  26. Grejner-Brzezinska D. A., (1997): High Accuracy Airborne Integrated Mapping System, Advances in Positioning and Reference Frames, F. K. Brunner (Ed.), IAG Scientific Assembly, Rio De Janeiro, Brazil, September 3-9, Springer, pp. 337-342 (invited).
  27. Grejner-Brzezinska D. A., Goad C. C., (1996): Subdaily Earth Rotation Determined from GPS, Geophysical Research Letters, Vol. 23, No. 19, pp.2701-2704.
  28. Goad C. C., Grejner-Brzezinska D. A., Yang M., (1996): Determination of High-Precision GPS Orbits Using Triple Differencing Technique, Journal of Geodesy, Vol. 70, pp. 655-662.
  29. Grejner-Brzezinska D. A., (1995): Analysis of GPS Data Processing Strategies: In Search of Optimized Routine of Orbit and Earth Rotation Parameter Recovery, Department of Geodetic Science and Surveying, OSU, Departmental Report No. 432.
  30. Johasson, J. M., et al. (1998): The atmospheric influence on the results from the Swedish GPS network, Phys. Chem. Earth, Vol. 23 (1), pp. 107-112.
  31. Kashani, I., Wielgosz, P., and Grejner-Brzezinska, D.A., The Effect of Double Difference Ionospheric Corrections Latency on Instantaneous Ambiguity Resolution in Long-Range RTK, presented at the ION GPS/GNSS 2004, September 21–24, 2004, Long Beach, CA, Winner of the "Best Presentation Award"
  32. Kashani, I., Grejner-Brzezinska, D.A., and Wielgosz, P., (2004), Towards instantaneous RTK GPS over 100 km distances, ION 60th AM, June 7–9, Dayton, OH, pp. 679–685.
  33. Kashani, I., Wielgosz, P., and Grejner-Brzezinska, D.A., (2004), On the Reliability of the VCV Matrix: A Case Study Based on GAMIT and BERNESE, GPS Solutions, Vol. 8, Issue 4., pp. 193–199
  34. Kim, D., and Langley, R.B., (2000), GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues, 7th GNSS Workshop and International Symposium on GPS/GNSS, Seoul, Korea, November 30 – December 2, pp. 213-221.
  35. Kruse, L. P., Sierk, B., Springer, T. and Cocard, M. (1999): GPS-meteorology:impact of predicted orbits on precipitable water estimates, Geophys. Res. Let., pp. 2045-2048.
  36. Kouba, J. and Mireault, Y. (1998): Analysis Coordinator Report, in IGS 1997 Technical Report, Ed. Mueller, I., Gowey, K., and Neilan, R., JPL, pp. 23-69.
  37. Kuo, Y. et al., (1998): A GPS/MET sounding through an intense upper-level front, Bull. Amer. Met. Soc., 79, pp. 617-626.
  38. Kursinki, E. et al. (1995): Observing tropospheric water vapor by radio occultation using the GPS, Geophys. Res. Let., 22(17), pp. 2365-2368.
  39. Melbourne. W. G. et al. (1994): The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publication 94-18.
  40. Misra, P. and Slater, J. (1999): GLONASS-GPS Interoperability Working Group, IGEX-98 Workshop, ION GPS, Nashville, September 13-14.
  41. Odijk, D., (2001), Instantaneous GPS Positioning Under Geomagnetic Storm Conditions, GPS Solutions, Vol. 5, No. 2, pp. 29–42.
  42. Rizos. C., (2002), Network RTK research and implementation: A geodetic perspective, Journal of Global Positioning Systems, Vol. 1, No. 2, pp. 144–150.
  43. Rocken, C., Van Hove, T., and Ware, R. (1997): Near real-time GPS sensing of atmospheric water vapor, Geophys. Res. Lett., 24, pp. 3221-3224.
  44. Rocken, C. et al. (1998): Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, D25, pp. 29,849-29,866.
  45. Rothacher, M. and Weber, R., (1999): Benefits from a combined GPS/GLONASS analysis for Earth rotation studies, IGEX-98 Workshop Proceedings, J. Slater, C. Noll, K. Gowy (eds.).
  46. Stone J. M., LeMmaster, E. A., Powell, J. D. and Rock, S. (1999): GPS pseudolitetransceivers and their applications, ION National Technical Meeting, CD ROM.
  47. Schaffrin, B., Grafarend, E., (1986): Generating Classes of Equivalent Linear Models by Nuisance Parameter Elimination, manuscripta geodaetica, Vol. 11, pp. 262-271.
  48. Smith, D.A. (2004), Computing unambiguous TEC and ionospheric delays using only carrier phase data from NOAA´s CORS network, Proceedings of IEEE PLANS 2004, April 26-29, Monterey, California, pp. 527-537.
  49. Spencer, P.S.J., Robertson, D.S. and Mader, G.L. (2004), Ionospheric data assimilation methods for geodetic applications, Proceedings of IEEE PLANS 2004, Monterey, California, April 26-29, 2004, pp. 510-517.
  50. Tregoning, P., Boers, R and O’Brien, D. (1998): Accuracy of absolute precipitable water vapor estimates from GPS observations, J. Geophy. Res., 103, pp. 28,701-28,710.
  51. Ware, R. et al. (1996): GPS sounding of the atmosphere from Low Earth Orbit: preliminary results, Bull. Amer. Meteor. Soc., 77, pp. 19-40.
  52. Ware, R. et al. (2000): SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education, to appear in the Bull. Am. Meteor. Soc.
  53. Wielgosz, P., Grejner-Brzezinska,D.A., Kashani, I., (2004), High-Accuracy DGPS and Precise Point Positioning Based on Ohio CORS Network, Proceedings of the Institute of Navigation 60th Annual Meeting, Dayton, Ohio, June 7-9, 2004, pp. 754-759
  54. Wielgosz, P., Grejner-Brzezinska, D.A., and Kashani, I., (2004),Network Approach to Precise Medium Range GPS Navigation, Navigation, Vol. 51, No. 3, pp. 213-220.
  55. Wielgosz, P., Grejner-Brzezinska,D.A., Kashani, I., (2004), High-Accuracy DGPS and Precise Point Positioning Based on Ohio CORS Network, Navigation (in press the Spring 2005 Issue).
  56. Wu, S. C., Yunck, T. P and Thornton, C. L., (1991): Reduced-dynamic technique for precise orbit determination of low Earth satellites, J. Guid. Control Dyn., Vol. 14 (1), pp. 24-30.
  57. Yunck T. P., et al (1994): First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon, J. Geophys. Res., 21(7), pp.541-544.
  58. Zhao, C.Y., (1998): The sensitivity of atmospheric temperature retrieved from radio occultation technique to orbit errors of GPS and LEO satellites, GeoForschungsZentrum Potsdam, Scientific Technical Report STR98/23.
  59. Zou, X., Vandenberghe, F., Pondeca M., and Kuo, Y.-H. (1997): Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note, NCAR/TN-435-STR, 110 pp.