Genes related to rice leaf angle and its regulation mechanism

Plant Cell Reports

Xiang-Yu Luo, Jingsheng Zheng, Rongyu Huang, Yumin Huang, Houcong Wang, Liangrong Jiang*

School of Life Sciences, XiamenUniversity, Xiamen 361005, China

*Co-Corresponding authors ().

Supplementary Table 1 Known genes affecting rice leaf angle

Gene symbol / Full name / Encoded protein / Regulation effects / Reference
BRD1 / BR-deficient dwarf 1 / Cytochrome P450 enzyme / positive / Hong et al. 2002
BRD2 / BR-deficient dwarf 2 / Cytochrome P450 enzyme / positive / Hong et al. 2005
BU1 / BRASSINOSTEROID UPREGULATED 1 / HLH protein / positive / Tanaka et al. 2009
D1 / DWARF1 / Heterotrimeric G protein α subunit / positive / Wang et al. 2006
D11 / DWARF11 / Cytochrome P450 (CYP724B1) enzyme / positive / Tanabe et al. 2005
D2 / DWARF2 / Cytochrome P450 (CYP90D2) enzyme / positive / Hong et al. 2003
DL / DROOPING LEAF1 / YABBY, zinc finger domain containing protein / positive / Yamaguchi et al. 2004
Dl2 / Drooping leaf2 / Unknown protein / positive / Huang et al. 2011
FIB / FISH BONE / Tryptophan aminotransferase / negative / Yoshikawa et al. 2014
IBH1 / ILI1 Binding bHLH 1 / bHLH protein / negative / Zhang et al. 2009a
ILA1 / Increased Leaf Angle1 / Mitogen-activated protein kinase kinase kinase / negative / Ning et al. 2011
ILI1 / Increase Leaf Inclination 1 / HLH transcription factor / positive / Zhang et al. 2009a
LA1 / LAZY1 / Membrane protein with NLS / negative / Li et al. 2007
LC1 / LEAF INCLINATION1 / Indole-3-acetic acid-amido synthetase / positive / Zhao et al. 2013
LC2 / LEAF INCLINATION2 / VIN3-like protein / negative / Zhao et al. 2010
LPA1 / Loose Plant Architecture1 / INDETERMINATE DOMAIN Protein / negative / Wu et al. 2013
OsAFB2 / AUXIN SIGNALING F-BOX / Auxin receptor / negative / Bian et al. 2012
OsARF1 / AUXIN RESPONSE FACTOR1 / Auxin response factor / positive / Song et al. 2009
OsARF19 / AUXIN RESPONSE FACTOR19 / Auxin response factor / positive / Zhang et al. 2015
OsBAK1 / BRI1-ASSOCIATED RECEPTOR KINASE 1 / BRI1-ASSOCIATED RECEPTOR KINASE 1 / positive / Li et al. 2009
OsBRI1 / BRASSINOSTEROID-INSENSITIVE1 / BR receptor kinase / positive / Yamamuro et al. 2000
OsBZR1 / BRASSINAZOLE-RESISTANT1 / Transcription factor / positive / Bai et al. 2007
OsDCL3a / DICER-LIKE 3a / DICER-LIKE protein / negative / Wei et al. 2014
OsDLT / DWARF and LOW-TILLERING / GRAS family protein / positive / Tong et al. 2012
OsDWARF4 / OsDWARF4 / Cytochrome P450 (CYP90B2) enzyme / positive / Sakamoto et al. 2006
OsGH3-13 / OsGH3-13 / Indole-3-acetic acid-amido synthetase / positive / Zhang et al. 2009b
OsGH3-2 / OsGH3-2 / Indole-3-acetic acid-amido synthetase / positive / Du et al. 2012
OsGH3-5 / OsGH3-5 / Indole-3-acetic acid-amido synthetase / positive / Zhang et al. 2015
OsGRAS19 / OsGRAS19 / Multiply motifs protein of 589 amino acids / positive / Chen et al. 2013
OsGSK1 / GLYCOGEN SYNTHASE KINASE3-LIKE1 / Glycogen synthase kinase3-like kinase / negative / Zhang et al. 2012
OsGSK2 / GLYCOGEN SYNTHASE KINASE3-LIKE2 / Glycogen synthase kinase3-like kinase / negative / Tong et al. 2012
OsGSR1 / OsGSR1 / C-terminal cysteine rich protein of 110 amino acids / positive / Wang et al. 2009
OsHAP3E / OsHAP3E / HAP3 subunit of the CCAAT-box-binding transcription factor / negative / Ito et al. 2011
OsIAA1 / OsIAA1 / Transcription factor / positive / Song et al. 2009
OsLG1 / LIGULESS1 / SBP (SQUAMOSA promoter Binding Protein)domain
containing protein / positive / Lee et al. 2007
OsLIC / TILLER ANGLE INCREASED CONTROLLER / CCCH-Type Zinc Finger Protein / negative / Zhang et al. 2012
OsMADS55 / OsMADS55 / SVP-group MADS box transcription factor / negative / Lee et al. 2008
OsMADS55 / OsMADS55 / SVP-group MADS box transcription factor / negative / Lee et al. 2008
OsMDP1 / MADS domain-containing protein1 / MADS domain-containing protein 1 / negative / Duan et al. 2006
OsmiR393 / OsmiR393 / MicroRNA / positive / Bian et al. 2012
OsSPY / SPINDLY / O-linked N-acetylglucosamine transferase / negative / Shimada et al. 2006
OsTIR1 / Transport inhibitor response protein 1 / Auxin receptor / negative / Bian et al. 2012
SDG725 / SDG725 / H3K36 methyltransferase / positive / Sui et al. 2012
TAC1 / Tiller Angle Controlling1 / Grass family specific protein of 259 amino acids / positive / Yu et al. 2007
TUD1 / TAIHU DWARF1 / U-box E3 ubiquitin ligase / positive / Hu et al. 2013
XIAO / XIAO / LRR kinase / positive / Jiang et al. 2012

References

Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the United States of America 104:13839-13844 doi:10.1073/pnas.0706386104

Bian H et al. (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). The New phytologist 196:149-161 doi:10.1111/j.1469-8137.2012.04248.x

Chen L et al. (2013) OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. Molecular plant 6:988-991 doi:10.1093/mp/sst027

Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of experimental botany 63:6467-6480 doi:10.1093/jxb/ers300

Duan K, Li L, Hu P, Xu SP, Xu ZH, Xue HW (2006) A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. The Plant journal : for cell and molecular biology 47:519-531 doi:10.1111/j.1365-313X.2006.02804.x

Hong Z et al. (2005) The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. The Plant cell 17:2243-2254 doi:10.1105/tpc.105.030973

Hong Z et al. (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant journal : for cell and molecular biology 32:495-508

Hong Z et al. (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant cell 15:2900-2910 doi:10.1105/tpc.014712

Hu X et al. (2013) The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G alpha subunit to regulate Brassinosteroid-mediated growth in rice. PLoS genetics 9:e1003391 doi:10.1371/journal.pgen.1003391

Huang J, Che S, Jin L, Qin F, Wang G, Ma N (2011) The physiological mechanism of a drooping leaf2 mutation in rice. Plant science : an international journal of experimental plant biology 180:757-765 doi:10.1016/j.plantsci.2011.03.001

Ito Y, Thirumurugan T, Serizawa A, Hiratsu K, Ohme-Takagi M, Kurata N (2011) Aberrant vegetative and reproductive development by overexpression and lethality by silencing of OsHAP3E in rice. Plant science : an international journal of experimental plant biology 181:105-110 doi:10.1016/j.plantsci.2011.04.009

Jiang Y, Bao L, Jeong SY, Kim SK, Xu C, Li X, Zhang Q (2012) XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. The Plant journal : for cell and molecular biology 70:398-408 doi:10.1111/j.1365-313X.2011.04877.x

Lee J, Park JJ, Kim SL, Yim J, An G (2007) Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant molecular biology 65:487-499 doi:10.1007/s11103-007-9196-1

Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. The Plant journal : for cell and molecular biology 54:93-105 doi:10.1111/j.1365-313X.2008.03406.x

Li D et al. (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant biotechnology journal 7:791-806 doi:10.1111/j.1467-7652.2009.00444.x

Li P et al. (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell research 17:402-410 doi:10.1038/cr.2007.38

Ning J, Zhang B, Wang N, Zhou Y, Xiong L (2011) Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice. The Plant cell 23:4334-4347 doi:10.1105/tpc.111.093419

Sakamoto T et al. (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature biotechnology 24:105-109 doi:10.1038/nbt1173

Shimada A et al. (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. The Plant journal : for cell and molecular biology 48:390-402 doi:10.1111/j.1365-313X.2006.02875.x

Song Y, You J, Xiong L (2009) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant molecular biology 70:297-309 doi:10.1007/s11103-009-9474-1

Sui P et al. (2012) H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. The Plant journal : for cell and molecular biology 70:340-347 doi:10.1111/j.1365-313X.2011.04873.x

Tanabe S et al. (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant cell 17:776-790 doi:10.1105/tpc.104.024950

Tanaka A et al. (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant physiology 151:669-680 doi:10.1104/pp.109.140806

Tong H et al. (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant cell 24:2562-2577 doi:10.1105/tpc.112.097394

Wang L et al. (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant journal : for cell and molecular biology 57:498-510 doi:10.1111/j.1365-313X.2008.03707.x

Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell research 16:916-922 doi:10.1038/sj.cr.7310111

Wei L et al. (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proceedings of the National Academy of Sciences of the United States of America 111:3877-3882 doi:10.1073/pnas.1318131111

Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant physiology 161:317-329 doi:10.1104/pp.112.208496

Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant cell 16:500-509 doi:10.1105/tpc.018044

Yamamuro C et al. (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant cell 12:1591-1606

Yoshikawa T et al. (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. The Plant journal : for cell and molecular biology 78:927-936 doi:10.1111/tpj.12517

Yu B et al. (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. The Plant journal : for cell and molecular biology 52:891-898 doi:10.1111/j.1365-313X.2007.03284.x

Zhang C et al. (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS genetics 8:e1002686 doi:10.1371/journal.pgen.1002686

Zhang LY et al. (2009a) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. The Plant cell 21:3767-3780 doi:10.1105/tpc.109.070441

Zhang S et al. (2015) The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant, cell & environment 38:638-654 doi:10.1111/pce.12397

Zhang SW et al. (2009b) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant physiology 151:1889-1901 doi:10.1104/pp.109.146803

Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell research 20:935-947 doi:10.1038/cr.2010.109

Zhao SQ, Xiang JJ, Xue HW (2013) Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Molecular plant 6:174-187 doi:10.1093/mp/sss064