Supplementary materials

A theoretical investigation ofone-dimensional lithium-bonded chain: enhanced first hyperpolarizabilityand little red-shift

Fang Ma a,* Dongsheng Baiaand Hongliang Xub,*

aSchool of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.

E-mail:

bInstitute of Functional Material Chemistry Faculty of Chemistry, Northeast Normal University, Changchun, 130024,China, E-mail:

Table S1. NBO charges of Li atoms for (NC-CC-Li)n.

n / Li1 / Li2 / Li3 / Li4 / Li5 / Li6 / Li7 / Li8
8 / 0.811 / 0.822 / 0.824 / 0.824 / 0.825 / 0.825 / 0.828 / 0.942
7 / 0.811 / 0.823 / 0.824 / 0.825 / 0.825 / 0.828 / 0.942
6 / 0.811 / 0.823 / 0.824 / 0.825 / 0.828 / 0.942
5 / 0.811 / 0.823 / 0.825 / 0.828 / 0.942
4 / 0.811 / 0.823 / 0.827 / 0.942
3 / 0.812 / 0.826 / 0.942
2 / 0.814 / 0.940
1 / 0.928

Table S2. NBO charges of Li atoms for (NC-Li)n.

n / Li1 / Li2 / Li3 / Li4 / Li5 / Li6 / Li7 / Li8
8 / 0.773 / 0.799 / 0.802 / 0.803 / 0.803 / 0.804 / 0.808 / 0.932
7 / 0.773 / 0.799 / 0.802 / 0.803 / 0.804 / 0.808 / 0.932
6 / 0.773 / 0.799 / 0.802 / 0.805 / 0.808 / 0.932
5 / 0.773 / 0.799 / 0.806 / 0.807 / 0.932
4 / 0.773 / 0.799 / 0.806 / 0.932
3 / 0.774 / 0.803 / 0.930
2 / 0.776 / 0.927
1 / 0.905

Table S3. The hyperpolarizabilities of (NC-Li)4 in different applied electricfields.

Field / βxxz / βyyz / βzzz / βz / β0
0.0001 / 102 / 97 / 174 / 224 / 226
0.0002 / 115 / 111 / 222 / 268 / 269
0.0005 / 113 / 112 / 242 / 280 / 280
0.0008 / 112 / 113 / 240 / 279 / 279
0.0010 / 113 / 112 / 240 / 279 / 279
0.0015 / 113 / 113 / 240 / 279 / 280

Table S4. The hyperpolarizabilities of (NC-CC-Li)4 in different applied electricfields.

Field / βxxz / βyyz / βzzz / βz / β0
0.0001 / -321 / -311 / 380 / -151 / 152
0.0002 / -316 / -319 / 320 / -189 / 189
0.0005 / -325 / -324 / 312 / -202 / 202
0.0008 / -325 / -325 / 309 / -204 / 204
0.0010 / -325 / -325 / 309 / -243 / 204
0.0015 / -326 / -326 / 305 / -208 / 208

Table S5.The result comparisons between CIS and TD-DFT(LC-BLYP) methods for (NC-CC-Li)n.

λmax (nm) / ΔE (eV) / f
CIS / TD-LC-BLYP / CIS / TD-LC-BLYP / CIS / TD-LC-BLYP
1 / 176.30 / 184.68 / 7.032 / 6.713 / 0.023 / 0.656
2 / 165.64 / 174.65 / 7.485 / 7.099 / 1.256 / 1.589
3 / 164.78 / 173.97 / 7.524 / 7.126 / 3.120 / 1.850
4 / 164.65 / 174.85 / 7.530 / 7.090 / 4.920 / 3.220
5 / 164.74 / 175.51 / 7.526 / 7.064 / 6.687 / 4.483
6 / 164.86 / 176.01 / 7.520 / 7.044 / 8.445 / 5.916
7 / 164.99 / 176.39 / 7.514 / 7.029 / 10.195 / 7.276
8 / 165.08 / 176.66 / 7.510 / 7.018 / 11.915 / 8.655

Table S6.The result comparisons between CIS and TD-DFT(LC-BLYP) methods for (NC -Li)n.

λmax (nm) / ΔE (eV) / f
CIS / TD-LC-BLYP / CIS / TD-LC-BLYP / CIS / TD-LC-BLYP
1 / 156.33 / 158.50 / 7.938 / 7.079 / 0.116 / 0.159
2 / 167.27 / 175.17 / 7.412 / 7.078 / 0.049 / 0.047
3 / 167.59 / 170.32 / 7.398 / 7.230 / 0.049 / 0.051
4 / 167.78 / 169.78 / 7.399 / 7.303 / 0.050 / 0.051
5 / 167.59 / 169.56 / 7.398 / 7.312 / 0.050 / 0.052
6 / 167.70 / 169.44 / 7.398 / 7.317 / 0.050 / 0.052
7 / 167.60 / 169.38 / 7.398 / 7.320 / 0.050 / 0.052
8 / 167.60 / 169.34 / 7.398 / 7.322 / 0.050 / 0.052

Fig S1. Electrostatic potentials on (NC -Li)n (0.004 au electronic density contour).

Fig S2. Electrostatic potentials on (NC-CC-Li)n (0.004 au electronic density contour).