Facile Scalable Synthesis of Ordered Macroporous Few-Layer MoS2 and Carbon Hybrid Nanoarchitectures with Sodium-Ion Batteries

Xiaoxuan Ma1, Shikun Liu1, Kun Zhang1, Xusong Liu1, Jian Hao1, Caixia Chi1, Jiupeng Zhao1, Xiaoxu Liu1,2, Yao Li3

* Corresponding authors. Jiupeng Zhao

E-mail addresses:

* Corresponding author. Xiaoxu Liu

(X. Liu)

* Corresponding author. Yao Li

(Y. Li)

Tel: +86 0451 86403767; Fax: +86 0451 86403767.

1 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China

2 Heilongjiang university of Science and Technology, Harbin 150022, PR China

3 Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, PR China

Fig. S1. TEM image of the OM MoS2.

Fig. S2. (a) TEM image of the OM-FM/C-HN2, (b-c) HRTEM images with different magnifications of the OM-FM/C-HN2, (d) TEM image of the OM-FM/C-HN3, (e-f) HRTEM images with different magnifications of the OM-FM/C-HN3, (g) TEM image of the OMC, (h-i) HRTEM images with different magnifications of the OMC.

Fig. S3. Mappings of Mo, S and C elements in the OM-FM/C-HN1.

Fig. S4. (a) Nitrogen adsorption–desorption isotherms, (b) Pore size distribution based on density functional theory method of OM MoS2, OM-FM/C-HN1/2/ and OMC, (c) Comparison of surface areas and pore volumes of OM MoS2, OM-FM/C-HN1/2/3 and OMC.

Fig. S5. (a) Survey XPS spectrum of OM MoS2, OM-FM/C-HN1/2/3 and OMC, (b) XPS C 1s spectrum of OM-FM/C-HN1.

Fig. S6. (a-d) The galvanostatic charge-discharge profiles of the OM MoS2, OM-FM/C-HN1/2/3 and OMC electrodes at a current density of 0.2A g-1 in the voltage range of 0.01–3.0 V vs. Na+/Na.

Fig. S7. (a-e) The cycling performance of the OM MoS2, OM-FM/C-HN1/2/3 and OMC electrodes for sodium ion batteries.

Fig. S8. (a) The cycling performance (d) rate capability of the pristine MoS2 for SIBs.

Fig. S9. (a) Low-resolution TEM image of OM-FM/C-HN1 after cycled. (b and c) HRTEM image of OM-FM/C-HN1 after cycled. (d) XPS spectrum of OM-FM/C-HN1 and OM MoS2 after cycled. (e) Electrochemical impedance spectra (EIS) of OM-FM/C-HN1 and OM MoS2 before cycled. (f) EIS of OM-FM/C-HN1 and OM MoS2 after cycled.

Table S1. A comparison of the electrochemical performance of MoS2 and its composites with this work.

Electrode
description / First cycle discharge
Capacity / First Coulombic
efficiency / Cycling stability / Rate performance
Our work / 631.2 mAh g-1 / 81.16 % / 350.1 mAh g-1 after 1000 cycles at 0.2A g-1 / 196.4 mAh g-1 at 10 A g-1 and
Sandwich-like rGo@MoS2@C sheets1 / 962.0 mAh g–1
at 0.1A g–1 / 62.80% / 406 mAh g–1
after 110 cycles at 0.1 A g–1 / 320.0 mAh g–1 at 1A g–1
Carbon coated MoS2 nanosheet2 / 783.0 mAh g–1
at 0.1A g–1 / 79. 00% / 351.6 mAh g–1
after 200 cycles at 10 A g–1 / 306.9 mAh g–1
at 5A g–1
MoS2/cotton-derived carbon fibers3 / 616 mAh g–1
at 0.1A g–1 / 82.00% / 323.1 mAh g–1
after 150 cycles at 0.1 A g–1 / 355.6 mAh g–1 at
2A g–1
TiO2‑Coated Flower-like MoS24 / 1101 mAh g–1
at 0.1A g–1 / 74.10% / 190 mAh g–1
after 200 cycles at 0.5 A g–1 / 220 mAh g–1 at 0.8A g–1
Exfoliated MoS2/CNTs5 / 770 mAh g–1
at 0.1A g–1 / 57.20% / 305 mAh g–1
after 1000 cycles
at 0.5 A g–1 / 192 mAh g–1 at
20A g–1
MoS2/C nanosphere6 / 590 mAh g–1
at 0.1A g–1 / 67.03% / 400 mAh g–1
after 300 cycles
at 0.5A g–1 / 395.0 mAh g–1 at
2 A g–1
MoS2/N-doped carbon ribbons7 / 386 mAh g–1
at 0.5A g–1 / 75.6% / 305 mAh g–1
after 300 cycles at 0.5A g–1 / 302 mAh g–1 at
2 A g–1
MoS2/N-Doped Carbon Arrays8
MoS2/rGO Nanoflakes9
N-Doped Carbon/MoS2 Microspheres10 / 1288 mAh g–1
at 0.1A g–1
543 mAh g–1
at 0.2A g–1
810 mAh g–1
at 0.15A g–1 / 52 %
74.6%
71.5% / 265 mAh g–1
after 1000 cycles at 0.1A g–1
411mAh g–1
after 300 cycles at 0.05A g–1
340 mAh g–1
after 150 cycles
at 0.15A g–1 / 235.0 mAh g–1 at 2A g–1
211.0 mAh g–1 at
8 A g–1
180 mAh g–1 at
3.0A g–1

[1] Y. Teng, H. Zhao, Z. Zhang, L. Zhao, Y. Zhang, Z. Li, Q. Xia, Z. Du and K. Swierczek, MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119, 91-100 (2017)

[2] X. Li, J. Li, Q. Gao, X. Yu, R. Hua, J. Liu, L. Yang and M. Zhu, MoS2 Nanosheets with Conformal Carbon Coating as Stable Anode Materials for Sodium-Ion Batteries. Electrochim. Acta 254, 172–180 (2017)

[3] Xi. Li, Y. Yang, J. Liu, L. Ouyang, J. Liu, R. Hu, L. Yang and M. Zhu, MoS2 /cotton-derived carbon fibers with enhanced cyclic performance for sodium-ion batteries Appl. Surf. Sci. 413, 169-174 (2017)

[4] W. Ren, W. Zhou, H. Zhang and C. Cheng, ALD TiO2-Coated Flower-like MoS2 Nanosheets on Carbon Cloth as Sodium Ion Battery Anode with Enhanced Cycling Stability and Rate Capability. ACS Appl. Mater. Interfaces 9 (1), 487 (2017)

[5] Y. Liu, X. He, D. Hanlon, A. Harvey, J. Coleman and Y. Li, Liquid, Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. Acs Nano 10 (9), 8821 (2016)

[6] P. Zhang, F. Qin, L. Zou, M. Wang, K. Zhang, Y. Lai and J. Li, Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 9 (33), 12189-12195 (2017)

[7] Y. Pang, S. Zhang, L. Liu, J. Liang, Z. Sun, Y. Wang, Xiao, D. Ding and S. Ding, Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J. Mater. Chem. A 5 (34), 17963–17972 (2017)

[8] W. Ren, H. Zhang, C. Guan and C. Cheng, Ultrathin MoS2 Nanosheets@ Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Adv. Funct. Mater. 27 (32), 1702116 (2017)

[9] R. Wang, S. Gao, K. Wang, M. Zhou, S. Cheng and K. Jiang, MoS2@rGO Nanoflakes as High Performance Anode Materials in Sodium Ion Batteries. Sci Rep 7(1),7963 (2017)

[10] D. Xie, X. Xia, Y. Wang, D. Wang, Y. Zhong, W. Tang, X. Wang, and J. Tu

Nitrogen-Doped Carbon Embedded MoS2 Microspheres as Advanced Anodes for Lithium- and Sodium-Ion Batteries. Chem.-Eur.J. 22(33),11872-11872 (2016)