ESM - Monogamy in large bee societies: A stingless paradox

Electronic Supplementary Material

Electronic supplementary material for the manuscript “Monogamy in large bee societies: A stingless paradox” by Rodolfo Jaffé, Fabiana C. Pioker-Hara, Charles F. dos Santos, Leandro R. Santiago, Denise A. Alves, Astrid de M. P. Kleinert, Tiago M. Francoy, Maria C. Arias, and Vera L. Imperatriz-Fonseca. Includes Material and Methods, Tables S1- S4 and References.

Material and Methods

Sampling

To collect pupae, a fireman ladder was employed to reach the nests, usually located on trees above 6m. Using professional climbing and beekeeping equipment we then secured ourselves to a branch at the nest level, and proceeded to drill a hole in the nest crust to open the brood chamber. We extracted between 5 and 10 different brood combs from each nest, placed them in Petri dishes and took them to the laboratory. Pupae were randomly collected from all combs. All nests successfully recovered from the damage done. To collect adult workers we simply struck the tree branches supporting the nests and waited for the bees to attack our bee suits. All bees were collected from the suits before sampling other nests. All samples were preserved in ethanol 95% and frozen shortly after collection. Samples were collected from three Brazilian populations across three different biomes:

  • Mossoró:Samples were collected during 2012 near the city of Mossoró (Rio Grande do Norte State),at the Experimental Station of Universidade Federal Rural do Semi-Árido (UFERSA). The region belongs to the biome Caatinga((Por et al. 2005)).
  • São Paulo:Samples were collected during2012 in the city of São Paulo (São Paulo State), atUniversidade de São Paulo (USP). The region belongs to the biome Atlantic Forest((Por et al. 2005)).
  • Itirapina:Samples were collected between 2008 and 2010, in the Itirapina Ecological Station and the ArrudaBotelho Institute (São Paulo State). The protected area has 2,300 ha and is one of the last reminiscents of the biome Cerrado ((Por et al. 2005)),being surrounded by fragmented cropland and urban landscapes. Before its establishment in 1984, the Itirapina Ecological Station consisted of grassland exposed to yearly burning. After the creation of the Station, burning stopped allowing a process of ecological succession.

Genotyping

DNA was extracted following a Chelex protocol ((Walsh et al. 1991)) and the microsatellite target sequences were amplified bypolymerase chain reactions (PCR), using fluorescent taggedprimers ((Schuelke 2000)).PCR products were then analyzed in anABI 3730 sequencer at Centro de Estudos do GenomaHumano, USP. Allele sizes were checked by eye usingthe software GeneMarker (Softgenetics).

Analyses

Pupae samples showing homozygosity at all loci were classified as males (n = 11), which in all cases showed genotypes consistent with those of queens (Table S2).Genetic diversity measures were computed using FSTAT (Goudet 2001), based on the genotypes of each queen and her mate. Using the reconstructed queen genotypes we then tested for deviations from the Hardy-Weinberg equilibrium and calculated inbreeding coefficients using Genepop((Rousset 2008)).Patriline non-detection errors (the probability of failing to identify a second male because it shares the same allele combination of the main male) were calculated for each colony following (Foster et al. 1999).Patriline non-sampling errors (the probability of not sampling offspring from a second male) were also calculated for each colony assuming that a putative second patriline was represented in 50%, 25%, and 10% of offspring respectively (Foster et al. 1999). Finally, matriline detection probability (for worker offspring produced by a daughter queen) was calculated for each colony according to (Richards et al. 2005).

1

ESM - Monogamy in large bee societies: A stingless paradox

Table S1: Sample locations, geographic coordinates of nests, sample type, number of successfully genotyped workers (n), number of queens detected, observed paternity, patrilinenon-detection errorper colony (NDE),patrilinenon-sampling error per colony (NSE) for patrilines represented in 50%, 25%, and 10% of offspring, and mean matriline detection probability per colony (MDP).

Colony / Location / Coordinates / Sample type / n / N. Queens / Obs. Paternity / NDE
(dn) / NSE
(50%/25%/10%) / MDP
M1 / Mossoró / -5.062486,-37.397988 / Pupae / 10 / 1 / 1 / 9.53X10-4 / 0.001/0.06/0.35 / 0.61
M2 / Mossoró / -5.060593,-37.4053 / Pupae / 10 / 1 / 1 / 6.00X10-5 / 0.001/0.06/0.35 / 0.72
M3 / Mossoró / -5.056207,-37.399795 / Pupae / 10 / 1 / 1 / 3.92X10-5 / 0.001/0.06/0.35 / 0.67
M4 / Mossoró / -5.061715,-37.401695 / Pupae / 11 / 1 / 1 / 1.80X10-4 / 4.88x10-4/0.04/0.31 / 0.66
M5 / Mossoró / -5.144641,-37.370356 / Pupae / 12 / 1 / 1 / 9.04X10-6 / 2.44x10-4/0.03/0.28 / 0.64
M6 / Mossoró / -5.111797,-37.387265 / Pupae / 14 / 1 / 1 / 3.92X10-5 / 6.10x10-5/0.02/0.23 / 0.69
S1 / São Paulo / -23.562412,-46.723047 / Pupae / 10 / 1 / 1 / 7.26X10-5 / 0.001/0.06/0.35 / 0.72
S2 / São Paulo / -23.564751,-46.731136 / Pupae / 14 / 1 / 1 / 9.42X10-3 / 6.10x10-5/0.02/0.23 / 0.54
S3 / São Paulo / -23.565816,-46.729781 / Pupae / 12 / 1 / 1 / 2.70X10-4 / 2.44x10-4/0.03/0.28 / 0.57
S4 / São Paulo / -23.555071,-46.723796 / Pupae / 10 / 1 / 1 / 2.22X10-5 / 0.001/0.06/0.35 / 0.75
S5a / São Paulo / -23.560959,-46.72072 / Pupae / 14 / 2 / 1 / 1.30X10-4 / 0.01/0.13/0.46 / 0.72
I1 / Itirapina / -22.210955,-47.892226 / Adults / 4 / 1 / 1 / 2.79X10-5 / 0.06/0.32/0.66 / 0.66
I2 / Itirapina / -22.210286,-47.891253 / Adults / 5 / 1 / 1 / 3.89X10-5 / 0.03/0.24/0.59 / 0.65
I3 / Itirapina / -22.215658,-47.913921 / Adults / 5 / 1 / 1 / 5.53X10-7 / 0.03/0.24/0.59 / 0.72
I4 / Itirapina / -22.214678,-47.914734 / Adults / 5 / 1 / 1 / 1.50X10-4 / 0.03/0.24/0.59 / 0.66
I5 / Itirapina / -22.208159,-47.900689 / Adults / 5 / 1 / 1 / 1.28X10-4 / 0.03/0.24/0.59 / 0.60
I6 / Itirapina / -22.210114,-47.923092 / Adults / 5 / 1 / 1 / 1.25X10-5 / 0.03/0.24/0.59 / 0.61
I7 / Itirapina / -22.207898,-47.924355 / Adults / 5 / 1 / 1 / 4.25X10-6 / 0.03/0.24/0.59 / 0.67
I8b / Itirapina / -22.209845,-47.918986 / Adults / 10 / 1 / 1 / 1.57X10-4 / 0.001/0.06/0.35 / 0.56
I9b / Itirapina / -22.214217,-47.922285 / Adults / 10 / 1 / 1 / 2.79X10-5 / 0.001/0.06/0.35 / 0.62
I10 / Itirapina / -22.217008,-47.915655 / Adults / 5 / 1 / 1 / 5.91X10-6 / 0.03/0.24/0.59 / 0.66
I11 / Itirapina / -22.216196,-47.91967 / Adults / 5 / 1 / 1 / 5.92x10-5 / 0.03/0.24/0.59 / 0.63
I12 / Itirapina / -22.205809,-47.920056 / Adults / 5 / 1 / 1 / 2.50X10-6 / 0.03/0.24/0.59 / 0.65
I13 / Itirapina / -22.204003,-47.926106 / Adults / 5 / 1 / 1 / 5.09X10-11 / 0.03/0.24/0.59 / 0.76
I14 / Itirapina / -22.211921,-47.921966 / Adults / 5 / 1 / 1 / 2.84X10-6 / 0.03/0.24/0.59 / 0.62
I15 / Itirapina / -22.195757,-47.917852 / Adults / 5 / 1 / 1 / 1.66X10-5 / 0.03/0.24/0.59 / 0.58
I16 / Itirapina / -22.2214,-47.919875 / Adults / 5 / 1 / 1 / 3.25X10-6 / 0.03/0.24/0.59 / 0.73
I17 / Itirapina / -22.217836,-47.920829 / Adults / 5 / 1 / 1 / 1.93X10-5 / 0.03/0.24/0.59 / 0.67
I18 / Itirapina / -22.172099,-47.870702 / Adults / 5 / 1 / 1 / 1.44X10-5 / 0.03/0.24/0.59 / 0.57
I19 / Itirapina / -22.172705,-47.883932 / Adults / 4 / 1 / 1 / 8.54X10-6 / 0.06/0.32/0.66 / 0.68
I20 / Itirapina / -22.20786,-47.921931 / Adults / 4 / 1 / 1 / 7.28X10-6 / 0.06/0.32/0.66 / 0.68
I21 / Itirapina / -22.208393,-47.923434 / Adults / 5 / 1 / 1 / 1.12X10-4 / 0.03/0.24/0.59 / 0.56
I22 / Itirapina / -22.198247,-47.902812 / Adults / 3 / 1 / 1 / 2.21X10-6 / 0.13/0.42/0.73 / 0.65
I23 / Itirapina / -22.207077,-47.916283 / Adults / 5 / 1 / 1 / 3.80X10-5 / 0.03/0.24/0.59 / 0.68
I24 / Itirapina / -22.210882,-47.914966 / Adults / 5 / 1 / 1 / 1.80X10-4 / 0.03/0.24/0.59 / 0.51
I25 / Itirapina / -22.207137,-47.903324 / Adults / 5 / 1 / 1 / 8.37X10-7 / 0.03/0.24/0.59 / 0.69
I26 / Itirapina / -22.207623,-47.904914 / Adults / 5 / 1 / 1 / 1.06X10-5 / 0.03/0.24/0.59 / 0.62
I27 / Itirapina / -22.203336,-47.90187 / Adults / 5 / 1 / 1 / 3.31X10-4 / 0.03/0.24/0.59 / 0.60
I28 / Itirapina / -22.222354,-47.908465 / Adults / 5 / 1 / 1 / 4.74X10-4 / 0.03/0.24/0.59 / 0.70
I29 / Itirapina / -22.201622,-47.924506 / Adults / 5 / 1 / 1 / 1.01X10-6 / 0.03/0.24/0.59 / 0.71
I30 / Itirapina / -22.200332,-47.920941 / Adults / 5 / 1 / 1 / 1.40X10-5 / 0.03/0.24/0.59 / 0.67
I31 / Itirapina / -22.214013,-47.921099 / Adults / 5 / 1 / 1 / 1.54X10-6 / 0.03/0.24/0.59 / 0.64
I32 / Itirapina / -22.21416,-47.917437 / Adults / 5 / 1 / 1 / 2.19X10-4 / 0.03/0.24/0.59 / 0.60

a Genotypes consistent with the presence of two, singly mated queens. Non-detection and non-sampling errors for this colony were calculated by averaging the estimates from both matrilines. bThese colonieshad two separate entrances and workers were collected from both entrances.

1

ESM - Monogamy in large bee societies: A stingless paradox

Table S2: Genotypes from all analyzed samples (see Excel file).

Table S3: Genetic diversity per locus and population. Number of alleles (NA), expected heterozygosity (HE) and inbreeding coefficients (FIS) are provided. FIS estimates were tested against zero (*p<0.05; **p<0.01; ***p<0.001). (χ210 = 30.65; p < 0.001)

Population / Locus / NA / HE / FIS
Mossoró / 4D / 2 / 0.21 / -0.11
2F / 8 / 0.90 / -0.13
2A / 2 / 0.50 / 0.71
3G / 2 / 0.11 / N/A
Tang60 / 5 / 0.72 / -0.14
Overall / 3.80± 2.68 / 0.47 ± 0.14 / 0.06
São Paulo / 4D / 4 / 0.77 / 0.15
2F / 5 / 0.71 / -0.14
2A / 10 / 0.91 / 0.11
3G / 3 / 0.46 / -0.05
Tang60 / 5 / 0.72 / -0.54
Overall / 5.40± 2.70 / 0.69 ± 0.07 / -0.07
Itirapinaa / 4D / 8 / 0.68 / 0.13
2F / 9 / 0.73 / 0.15
2ª / 12 / 0.73 / -0.001
3G / 5 / 0.58 / 0.33**
Tang60 / 8 / 0.61 / 0.25*
1B / 8 / 0.75 / 0.04
1D / 14 / 0.90 / -0.02
Overall / 9.14 ± 2.97 / 0.71 ± 0.04 / 0.11**

aA significantdeparture from the Hardy-Weinberg equilibrium was only detected in Itirapina population (χ210 = 30.65; p < 0.001), due to significant FIS estimates in loci 3G and Tang60.

Table S4:Paternity and colony size across 58 species of social bees (only monogynous species included). Only data from studies employing genetic markers are presented. Paternity frequency is presented as observed paternity (Kobs) and effective paternity (me). The number of analyzed colonies (n) and the reported colony size for each species (mean number of workers) are also provided. Arithmetic means are given for Kobswhile harmonic meansare given for me.

Tribe / Species / Kobs / me / n / Colony size / References
Apini / Apisandreniformis / 13.50 / 10.50 / 60 / 4,900 / 1;2
Apini / Apiscerana / 18.80 / 14.10 / 74 / 6,884 / 3;4
Apini / Apisdorsata / 54.90 / 44.20 / 140 / 36,630 / 5;4
Apini / Apis florea / 11.60 / 7.90 / 81 / 6,271 / 6;4
Apini / Apiskoschevnikovi / 16.20 / 13.30 / 74 / 7,000 / 7;8
Apini / Apislaboriosa / 34.40 / 18.28 / 135 / 36,630 / 9; B.Oldroyd pers. comm.
Apini / Apis mellifera / 12.00 / 11.60 / 61 / 19,524 / 10;11; 12
Apini / Apisnigrocincta / 54.00 / 40.30 / 159 / 6,884 / 13; B.Oldroyd pers. comm.
Augochlorini / Augochlorellastriata / 1.00 / 1.00 / 24 / 7 / 14
Bombini / Bombusaffinis / 1.00 / 1.00 / 1 / 176 / 15;11
Bombini / Bombusardens / 1.00 / 1.00 / 5 / 26 / 16;17
Bombini / Bombusauricomus / 1.00 / 1.00 / 1 / 35 / 15;18
Bombini / Bombusbimaculatus / 1.25 / 1.05 / 8 / 60 / 15;11
Bombini / Bombuscitrinus / 2.50 / 1.76 / 10 / 50 / 15; B. Baer pers. comm.
Bombini / Bombusfervidus / 1.00 / 1.00 / 1 / 88 / 15; 11
Bombini / Bombusgriseocollis / 1.00 / 1.00 / 1 / 46 / 15;19
Bombini / Bombushonshuensis / 1.00 / 1.00 / 1 / 200 / 16; 20
Bombini / Bombushortorum / 1.00 / 1.00 / 5 / 100 / 21; 11
Bombini / Bombushypnorum / 1.87 / 1.18 / 23 / 29 / 22;21; 4
Bombini / Bombus impatiens / 1.55 / 1.04 / 10 / 450 / 15;23; 11
Bombini / Bombuslapidarius / 1.00 / 1.00 / 11 / 200 / 21; 24
Bombini / Bombuslucorum / 1.00 / 1.00 / 12 / 200 / 21;11
Bombini / Bombusmixtus / 4.00 / 3.57 / 5 / 50 / 15; B. Baer pers. comm.
Bombini / Bombusoccidentalis / 1.00 / 1.00 / 23 / 55 / 25; 26
Bombini / Bombuspascuorum / 1.00 / 1.00 / 6 / 120 / 21; 24
Bombini / Bombuspratorum / 1.00 / 1.00 / 5 / 100 / 21; 24
Bombini / Bombusternarius / 2.00 / 2.04 / 12 / 100 / 15; 11
Bombini / Bombusterrestris / 1.00 / 1.00 / 17 / 350 / 21;24
Bombini / Bombusvagans / 1.00 / 1.00 / 4 / 70 / 15;11
Halictini / Lasioglossummalachurum / 1.36 / 1.15 / 30 / 33 / 27; 28; 29
Halictini / Lasioglossumzephyrum / 1.00 / 1.00 / 8 / 20 / 30; 31
Meliponini / Austroplebeiaaustralis / 1.00 / 1.00 / 2 / 2,000 / 32;4
Meliponini / Austroplebeiasymei / 1.00 / 1.00 / 4 / 2,000 / 33;4
Meliponini / Heterotrigonahockingsia / 1.00 / 1.00 / 4 / 7,000 / 33; 34
Meliponini / Heterotrigonamellipesb / 1.00 / 1.00 / 4 / 2,000 / 33
Meliponini / Lestrimellitalimao / 1.23 / 2 / 900 / 35;36
Meliponini / Meliponabeecheii / 2.20 / 1.13 / 10 / 1,192 / 37;34; R. Paxton unpubl. data
Meliponini / Meliponamarginata / 1.00 / 1.00 / 5 / 202 / 38;34
Meliponini / Meliponapanamica / 1.00 / 1.00 / 9 / 550 / 35;34
Meliponini / Meliponaquadrifasciata / 1.00 / 1.00 / 7 / 350 / 35; 38;34
Meliponini / Melipona scutellaris / 1.00 / 1.00 / 54 / 992 / 38;39;34;40
Meliponini / Nannotrigonaperilampoides / 1.19 / 7 / 1,125 / 35;41
Meliponini / Paratrigonasubnuda / 1.16 / 11 / 3,750 / 35; 42
Meliponini / Partamonaaff.cupira / 1.00 / 0.91 / 12 / 3,390 / 35; 43
Meliponini / Plebeiaaff. minima / 1.42 / 5 / 125 / 35; 36
Meliponini / Plebeiadroryana / 1.00 / 1.00 / 2 / 2,960 / 38; 34
Meliponini / Plebeiaremota / 1.00 / 1.00 / 7 / 3,500 / 38;34
Meliponini / Plebeiasaiqui / 1.00 / 1.00 / 4 / 1,500 / 38;4
Meliponini / Scaptotrigonaaff.depilisc / 1.20 / 1.02 / 19 / 10,375 / 44;34
Meliponini / Scaptotrigonabarrocoloradensis / 1.00 / 0.85 / 4 / 5,000 / 35;34
Meliponini / Scaptotrigonamexicana / 1.00 / 1.00 / 5 / 2,000 / 33; 45
Meliponini / Scaptotrigonapectoralis / 1.00 / 1.00 / 7 / 4,600 / 33;43
Meliponini / Schwarzianaquadripunctata / 1.00 / 1.00 / 22 / 1,650 / 35; 46;34
Meliponini / Tetragonaclavipes / 1.00 / 1.00 / 17 / 7,000 / 35; 38;34
Meliponini / Tetragonulacarbonariad / 1.00 / 1.00 / 5 / 2,750 / 47
Meliponini / Tetragonulaclypearise / 1.00 / 1.00 / 4 / 500 / 33;4
Meliponini / Trigonafulviventris / 1.15 / 7 / 8,500 / 35;43
Meliponini / Trigonaspinipesf / 1.00 / 1.00 / 44 / 92,500 / This study; 48

Notes: aPreviousTrigonahockingsi, bPreviousTrigonamellipes, cPreviousScaptotrigona postica, dPreviousTrigona carbonaria, ePreviousTrigonaclypeari, f PreviousTrigonaruficrus.

References:1(Oldroyd et al. 1997); 2(Koeniger et al. 2011); 3(Oldroyd et al. 1998); 4(Hammond and Keller 2004); 5(Wattanaachaiyingcharoen et al. 2003); 6(Palmer and Oldroyd 2001); 7(Rinderer et al. 1998); 8(Koeniger et al. 2011); 9(Paar et al. 2004);10(Estoup et al. 1994); 11(Michener 1974); 12(Schneider and Blyther 1988); 13(Palmer et al. 2001); 14(Mueller et al. 1994); 15(Payne et al. 2003); 16(Kokuvo et al. 2009); 17(Katayma 1997); 18(Katayma 1997); 19(Cameron 1989); 20(Ochiai and Katayama 1982); 21(Schmid-Hempel and Schmid-Hempel 2000); 22(Paxton et al. 2001); 23(Cnaani et al. 2002); 24(Westphal et al. 2006); 25(Owen and Whidden 2013); 26(Whittington and Winston 2003);27(Paxton et al. 2002); 28(Richards et al. 1995); 29(Soro et al. 2009); 30(Barrows 1975); 31(Crozier et al. 1987); 32(Drumond et al. 2000); 33(Palmer et al. 2002); 34(Tóth et al. 2004); 35(Peters et al. 1999); 36(Roubik 1983); 37(Paxton et al. 1999); 38(Tóth et al. 2002b); 39(Alves et al. 2009); 40(Wenseleers et al. 2011); 41(Cauich et al. 2004); 42(Tóth et al. 2002a); 43(Slaa et al. 2003); 44(Paxton et al. 2003); 45(Sánchez et al. 2004); 46(Tóth et al. 2003); 47(Green and Oldroyd 2002); 48(Lindauer and Kerr 1960).

References

Alves DA, Imperatriz-Fonseca VL, Francoy TM et al.(2009) The queen is dead - long live the workers: intraspecific parasitism by workers in the stingless bee Melipona scutellaris. Mol Ecol 18 (19):4102-4111.

Barrows EM (1975) Mating behavior in halictine bees (Hymenoptera: Halictidae): III. Copulatory behavior and olfactory communication. Insectes Soc 22 (3):307-331.

Cameron SA (1989) Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocollis (Hymenoptera: Apidae). Ethology 80 (1‐4):137-151.

Cauich O, Quezada-Euán JJG, Macias-Macias JO et al.(2004) Behavior and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in Subtropical México. Journal of Economic Entomology 97 (2):475-481.

Cnaani J, Schmid-Hempel R, Schmidt JO (2002) Colony development, larval development and worker reproduction in Bombus impatiens Cresson. Insectes Sociaux 49:164-170.

Crozier R, Smith B, Crozier Y (1987) Relatedness and population structure of the primitively eusocial bee Lasioglossum zephyrum (Hymenoptera: Halictidae) in Kansas. Evolution:902-910.

Drumond PM, Oldroyd BP, Osborne K (2000) Worker reproduction in Austroplebeia australis Friese (Hymenoptera, Apidae, Meliponini). Insectes Sociaux 47:333-336.

Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honey bee colonies. Proceedings of the Royal Society London B 258:1-7.

Foster KR, Seppä P, Ratnieks FL et al. (1999) Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behav Ecol Sociobiol 46 (4):252-257.

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. 2.9.3.2 edn.,

Green C, Oldroyd B (2002) Queen mating frequency and maternity of males in the stingless bee Trigona carbonaria Smith. Insectes Soc 49 (3):196-202.

Hammond RL, Keller L (2004) Conflict over male parentage in social insects. Plos Biology 2 (9):1472-1482.

Katayma E (1997) Oviposition and oophagy by workers in queenright colonies of Bombus (Pyrobombus) ardens (Hymenoptera, Apidae). Kontyû, Tokyo 65 (1):23-35.

Koeniger N, Koeniger G, Smith D (2011) Phylogeny of the genus Apis. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin, pp 23-50. doi:10.1007/978-3-642-16422-4_2

Kokuvo N, Toquenaga Y, Goka K (2009) Effective paternity in natural colonies of Japanese native bumble bees. Ecol Res 24 (5):1111-1115.

Lindauer M, Kerr W (1960) Communication between the workers of stingless bees. Bee World 41:29-41, 65–71.

Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press of Harvard University Press, Cambridge, USA,

Mueller UG, Eickwort GC, Aquadro CF (1994) DNA fingerprinting analysis of parent-offspring conflict in a bee. Proceedings of the National Academy of Sciences of the United States of America 91 (11):5143-5147.

Ochiai H, Katayama E (1982) Supplementary notes on nests of some Japanese bumblebees: I. Bombus honshuensis. Kontyû, Tokyo 50 (2):283-300.

Oldroyd BP, Clifton MJ, Parker K et al. (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera: Apidae). Annals of the Entomological Society of America 91 (5):700-709.

Oldroyd BP, Clifton MJ, Wongsiri S et al. (1997) Polyandry in the genus Apis, particularly Apis andreniformis. Behav Ecol Sociobiol 40 (1):17-26.

Owen RE, Whidden TL (2013) Monandry and polyandry in three species of North American bumble bees (Bombus) determined using microsatellite DNA markers. Canadian Journal of Zoology (91):7.

Paar J, Oldroyd BP, Huettinger E et al. (2004) Levels of polyandry in Apis laboriosa Smith from Nepal. Insectes Sociaux 51 (3):212-214.

Palmer K, Oldroyd B, Franck P et al. (2001) Very high paternity frequency in Apis nigrocincta. Insectes Sociaux 48 (4):327.

Palmer KA, Oldroyd BP (2001) Mating frequency in Apis florea revisited (Hymenoptera, Apidae). Insectes Sociaux 48:40-43.

Palmer KA, Oldroyd BP, Quezada-Euán JJG et al.(2002) Paternity frequency and maternity of males in some stingless bee species. Mol Ecol 11 (10):2107-2113.

Paxton RJ, Ayasse M, Field J et al.(2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Molecular Ecology 11 (11):2405-2416.

Paxton RJ, Bego LR, Shah MM et al. (2003) Low mating frequency of queens in the stingless bee Scaptotrigona postica and worker maternity of males. Behav Ecol Sociobiol 53 (3):174-181.

Paxton RJ, Thoren PA, Estoup A et al. (2001) Queen-worker conflict over male production and the sex ratio in a facultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation. Mol Ecol 10 (10):2489-2498.

Paxton RJ, Weissschuh N, Engels W et al. (1999) Not only single mating in stingless bees. Naturwissenschaften 86 (3):143-146.

Payne CM, Laverty TM, Lachance MA (2003) The frequency of multiple paternity in bumble bee (Bombus) colonies based on microsatellite DNA at the B10 locus. Insectes Sociaux 50 (4):375-378.

Peters JM, Queller DC, Imperatriz-Fonseca VL et al.(1999) Mate number, kin selection and social conflicts in stingless bees and honeybees. Proceedings of the Royal Society B: Biological Sciences 266 (1417):379.

Por FD, Imperatriz-Fonseca VL, Lencioni F (2005) Biomes of Brazil: an illustrated natural history. Pensoft Publishers, Moscow

Richards MH, French D, Paxton RJ (2005) It's good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee. Mol Ecol 14 (13):4123-4133.

Richards MH, Packer L, Seger J (1995) Unexpected patterns of parentage and relatedness in a primitively eusocial bee. Nature 373 (6511):239-241.

Rinderer TE, Stelzer JA, Oldroyd BP et al. (1998) Levels of polyandry and intracolonial genetic relationships in Apis koschevnikovi. J Apic Res 37 (4):281-287.

Roubik DW (1983) Nest and Colony Characteristics of Stingless Bees from Panamá (Hymenoptera: Apidae). J Kans Entomol Soc 56 (3):327-355.

Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8 (1):103-106.

Sánchez D, Nieh JC, Hénaut Y et al. (2004) High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91 (7):346-349.

Schmid-Hempel R, Schmid-Hempel P (2000) Female mating frequencies in Bombus spp. from Central Europe. Insectes Soc 47 (1):36-41.

Schneider S, Blyther R (1988) The habitat and nesting biology of the African honey bee Apis mellifera scutellata in the Okavango River Delta, Botswana, Africa. Insectes Sociaux 35 (2):167-181.

Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18 (2):233-234.

Slaa EJ, Wassenberg J, Biesmeijer JC (2003) The use of field-based social information in eusocial foragers: local enhancement among nestmates and heterospecifics in stingless bees. Ecological Entomology 28 (3):369-379.

Soro A, Ayasse M, Zobel M et al. (2009) Complex sociogenetic organization and the origin of unrelated workers in a eusocial sweat bee, Lasioglossum malachurum. Insectes Soc 56 (1):55-63.

Tóth E, Queller DC, Dollin A et al.(2004) Conflict over male parentage in stingless bees. Insectes Soc 51 (1):1-11.

Tóth E, Queller DC, Imperatriz-Fonseca VL et al.(2002a) Genetic and behavioral conflict over male production between workers and queens in the stingless bee Paratrigona subnuda. Behavioral Ecology and Sociobiology 53 (1):1-8.

Tóth E, Strassmann JE, Imperatriz-Fonseca VL et al. (2003) Queens, not workers, produce the males in the stingless bee Schwarziana quadripunctata quadripunctata. Animal Behaviour 66 (2):359-368.

Tóth E, Strassmann JE, Nogueira-Neto P et al. (2002b) Male production in stingless bees: variable outcomes of queen-worker conflict. Molecular Ecology 11 (12):2661-2667.

Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10 (4):506-513.

Wattanaachaiyingcharoen W, Oldroyd BP, Wongsiri S et al. (2003) A scientific note on the mating frequency of Apis dorsata. Apidologie 34 (1):85-86.

Wenseleers T, Alves DA, Francoy TM et al. (2011) Intraspecific queen parasitism in a highly eusocial bee. Biology Letters 7 (2):173-176.

Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149 (2):289-300.

Whittington R, Winston ML (2003) Effects of Nosema bombi and its treatment fumagillin on bumble bee (Bombus occidentalis) colonies. Journal of Invertebrate Pathology 84 (1):54-58.

1