Measure: MEASURE_1
lecturer / Dependent Variable
1 / tutor1
2 / tutor2
3 / tutor3
4 / tutor4
Descriptive Statistics
M / SD / N
Dr. Field / 68.88 / 5.643 / 8
Dr. Smith / 64.25 / 4.713 / 8
Dr.Scrote / 65.25 / 6.923 / 8
Dr. Death / 57.38 / 7.909 / 8
Descriptive Statistics
N / Minimum / Maximum / M / SD
Dr. Field / 8 / 62 / 78 / 68.88 / 5.643
Dr. Smith / 8 / 58 / 73 / 64.25 / 4.713
Dr. Scrote / 8 / 54 / 75 / 65.25 / 6.923
Dr. Death / 8 / 45 / 65 / 57.38 / 7.909
Valid N (listwise) / 8
Multivariate Testsa
Effect / Value / F / Hypothesis df / Error df / Sig. / Partial Eta Squared
Lecturer / Pillai's Trace / .741 / 4.760b / 3.000 / 5.000 / .063 / .741
Wilks' Lambda / .259 / 4.760b / 3.000 / 5.000 / .063 / .741
Hotelling's Trace / 2.856 / 4.760b / 3.000 / 5.000 / .063 / .741
Roy's Largest Root / 2.856 / 4.760b / 3.000 / 5.000 / .063 / .741
a. Design: Intercept
Within Subjects Design: lecturer
b. Exact statistic
Mauchly's Test of Sphericitya
Measure: MEASURE_1
Within Subjects Effect / Mauchly's W / Approx. Chi-Square / df / Sig. / Epsilonb
Greenhouse-Geisser / Huynh-Feldt / Lower-bound
Lecturer / .131 / 11.628 / 5 / .043 / .558 / .712 / .333
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.
a. Design: Intercept
Within Subjects Design: lecturer
b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.
Tests of Within-Subjects Effects
Measure: MEASURE_1
Source / Type III Sum of Squares / df / Mean Square / F / Sig. / Partial Eta Squared
Lecturer / Sphericity Assumed / 554.125 / 3 / 184.708 / 3.700 / .028 / .346
Greenhouse-Geisser / 554.125 / 1.673 / 331.245 / 3.700 / .063 / .346
Huynh-Feldt / 554.125 / 2.137 / 259.329 / 3.700 / .047 / .346
Lower-bound / 554.125 / 1.000 / 554.125 / 3.700 / .096 / .346
Error(Lecturer) / Sphericity Assumed / 1048.375 / 21 / 49.923
Greenhouse-Geisser / 1048.375 / 11.710 / 89.528
Huynh-Feldt / 1048.375 / 14.957 / 70.091
Lower-bound / 1048.375 / 7.000 / 149.768
Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Source / Lecturer / Type III Sum of Squares / df / Mean Square / F / Sig. / Partial Eta Squared
Lecturer / Linear / 448.900 / 1 / 448.900 / 4.938 / .062 / .414
Quadratic / 21.125 / 1 / 21.125 / .586 / .469 / .077
Cubic / 84.100 / 1 / 84.100 / 3.689 / .096 / .345
Error(Lecturer) / Linear / 636.400 / 7 / 90.914
Quadratic / 252.375 / 7 / 36.054
Cubic / 159.600 / 7 / 22.800
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average
Source / Type III Sum of Squares / df / Mean Square / F / Sig. / Partial Eta Squared
Intercept / 130816.125 / 1 / 130816.125 / 8858.166 / .000 / .999
Error / 103.375 / 7 / 14.768
Estimated Marginal Means
1. Grand MeanMeasure: MEASURE_1
M / Std. Error / 95% Confidence Interval
Lower Bound / Upper Bound
63.938 / .679 / 62.331 / 65.544
2. Lecturer
EstimatesMeasure: MEASURE_1
lecturer / M / Std. Error / 95% Confidence Interval
Lower Bound / Upper Bound
1 / 68.875 / 1.995 / 64.158 / 73.592
2 / 64.250 / 1.666 / 60.310 / 68.190
3 / 65.250 / 2.448 / 59.462 / 71.038
4 / 57.375 / 2.796 / 50.763 / 63.987
Pairwise Comparisons
Measure: MEASURE_1
(I) lecturer / (J) lecturer / Mean Difference (I-J) / Std. Error / Sig.b / 95% Confidence Interval for Differenceb
Lower Bound / Upper Bound
1 / 2 / 4.625* / 1.085 / .022 / .682 / 8.568
3 / 3.625 / 2.841 / 1.000 / -6.703 / 13.953
4 / 11.500 / 4.675 / .261 / -5.498 / 28.498
2 / 1 / -4.625* / 1.085 / .022 / -8.568 / -.682
3 / -1.000 / 2.563 / 1.000 / -10.320 / 8.320
4 / 6.875 / 4.377 / .961 / -9.039 / 22.789
3 / 1 / -3.625 / 2.841 / 1.000 / -13.953 / 6.703
2 / 1.000 / 2.563 / 1.000 / -8.320 / 10.320
4 / 7.875 / 4.249 / .637 / -7.572 / 23.322
4 / 1 / -11.500 / 4.675 / .261 / -28.498 / 5.498
2 / -6.875 / 4.377 / .961 / -22.789 / 9.039
3 / -7.875 / 4.249 / .637 / -23.322 / 7.572
Based on estimated marginal means
*. The mean difference is significant at the
b. Adjustment for multiple comparisons: Bonferroni.
Multivariate Tests
Value / F / Hypothesis df / Error df / Sig. / Partial Eta Squared
Pillai's trace / .741 / 4.760a / 3.000 / 5.000 / .063 / .741
Wilks' lambda / .259 / 4.760a / 3.000 / 5.000 / .063 / .741
Hotelling's trace / 2.856 / 4.760a / 3.000 / 5.000 / .063 / .741
Roy's largest root / 2.856 / 4.760a / 3.000 / 5.000 / .063 / .741
Each F tests the multivariate effect of lecturer. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Exact statistic
(1)What are the assumptions?
(2)State whether assumptions have been met (if not met state alternatives)
(3)Null and alternative (research) hypothesis
(4)Copy and paste syntax file
(5)APA format output files
(6)Create a results table in APA format
(7)Report results on Repeated Measures ANOVA models
(8)Describe how you get the sample size to achieve 80% power, alpha= .05, and the appropriate effect size.