Name: ______Date: ______

Algebra 8 Honors Final Exam Topics

JUNE 2014

Ch.5 – Systems of Linear Inequalities

5.1 Solving Inequalities by Addition and Subtraction

5.2 Solving Inequalities by Multiplication and Division

5.3 Solving Multi-Step Inequalities

5.4 Solving Compound Inequalities

5.5 Inequalities Involving Absolute Value

5.6 Graphing Inequalities in Two Variables

6.8 Systems of Inequalities

Ch.7 – Monomials, Scientific Notation, and Polynomials

7.1 Multiplying Monomials

7.2 Dividing Monomials

7.3 Scientific Notation

7.4 Introduction to Polynomials

7.5 Adding and Subtracting Polynomials

7.6 Multiplying a Polynomial by a Monomial

7.7 Multiplying Polynomials

7.8 Special Products

Ch.8 – Factoring

8.1 Monomials and Factoring

8.2 Using the Distributive Property

8.3 Factoring Quadratic Equations: x2+bx+c=0

8.4 Factoring Quadratic Equations: ax2+bx+c=0

8.5 Factoring Quadratic Equations: Differences of Squares

8.6 Factoring Quadratic Equations: Perfect Square Trinomials

Ch.9 – Quadratic and Exponential Functions

9.1 Graphing Quadratic Functions

9.2 Graphing Quadratic Functions using critical values or factoring (if possible)

9.5 Solving Quadratic Equations by Using the Quadratic Formula

For all chapters, you should know the vocabulary at the end of each chapter and be able to define or describe the words. I would also suggest you look at your previous quizzes and tests.

To review for mastery of a subject:

1. Complete this packet.

2. Review the quizzes and tests you have already taken and be sure that if you had the same test to take today, you would get 100%.

3. Read the chapter summaries several times. Write down any ideas that are unclear.

4. Do the Chapter Test for each chapter – These should now be easy.

Lesson 5-1 Solving Inequalities by Addition and Subtraction

Solve each inequality. Check your solution, and then graph it on a number line.

1)  c+9≤3

2)  d—3<13

3)  14p>5+13p

4)  12x+14≥32x-23

Define a variable, write an inequality and solve each problem. Check your solution.

5)  The sum of a number and a negative six is greater than 9.

6)  Negative five times a number is less than the sum of negative six times the number and 12.

Lesson 5-2 Solving Inequalities by Multiplication and Division

Solve each inequality. Check your solution.

1)  -5j<-60

2)  p5<8

3)  -x8<4

4)  23m≥-22

Define a variable, write an inequality, and solve each problem. Then check your solution.

5)  Negative one times a number is greater than -7.

6)  Three fifths of a number is at least negative 10.

Lesson 5-3 Solving Multi-Step Inequalities

Solve each inequality. Check your solution.

1)  3y-4>-37

2)  -5q+9>24

3)  15t-4>11t-16

4)  2w+4≥7w-1

5)  8c-c-5>c+17

6)  5x≤10(3x+4)

Lesson 5-4 Solving Compound Inequalities

Solve each compound inequality. Then graph the solution set.

1)  5m-8≥10-m or 5m+11<-9

2)  -9<2z+7<10

3)  2h-2≤3h≤4h-1

4)  2q-4≤3(q+2) or q-8≤4-q

Lesson 5-5 Inequalities Involving Absolute Value

Solve each inequality. Then graph the solution set.

1)  3x+2>8

2)  3h-52≤2


Lesson 5-6 Graphing Inequalities in Two Variables

Determine which ordered pairs are part of the solution set for the following inequality.

1)  2x+y≤8;0,0, -1, -1, 3, -2, 8, 0

Graph each inequality.

1)  3y-2x≤2

2)  y>4x-1

Lesson 6-8 Systems of Inequalities

Solve each system of inequalities.

1)  y≤x+4

y-x≥1

2)  y≤-1

3x-2y>6

Lesson 7-1 Multiplying Monomials

Determine whether each expression is a monomial. Write yes or no. Explain your reasoning.

1)  n2-3

2)  53

Simplify each expression.

3)  a5(a)(a7)

4)  (-3mp2)(5m3p2)

5)  12w326w42

Lesson 7-2 Dividing Monomials

Simplify. Assume that no denominator is equal to zero.

1)  b6c5b3c2

2)  -x3y3x3y6

3)  2a2b43a3b2

4)  3ab2c-32a2bc22

5)  5n-1m22m-20

Lesson 7-3 Scientific Notation

Express each number in scientific notation

1)  1,400,322

2)  0.004500

Express each number in standard form

3)  5.3×103

4)  4.7×10-6

Evaluate. Express the results in both scientific notation and standard form.

5)  (5.23×10-7)(8.2×105)

6)  3.344×1064.2×10-3

Lesson 7-4 Intro to Polynomials

State whether each expression is a polynomial. If so, identify it as a monomial, a binomial, or a trinomial.

1)  5x2y+3xy-7

2)  0

3)  5k-k2y

Find the degree of each polynomial.

4)  a+5c

5)  14abcd-6d3

Arrange the terms of each polynomials in standard form.

6)  2x2-3x+4x3-x5

7)  x8+2x2-x6+1

Lesson 7-5 Adding and Subtracting Polynomials

Find each sum or difference.

1)  (3a2+5)+(4a2-1)

2)  4d+3e-8f-(-3d+10e-5r+6)

3)  -7c2-2c-5+9c-6+16c2+3+(-9c2-7+7)

Lesson 7-6 Multiplying a Polynomial by a Monomial

Find each product.

1)  -3(8x+5)

2)  7xy(5x2-y2)

3)  4m2(9m2n+mn-5n2)

Simplify each expression.

4)  -3a2a-12+5a

5)  -2xx+3+3(x+3)

Solve each equation.

6)  -611-2x=7(-2-2x)

7)  xx-3+4x-3=8x+x(3+x)

8)  -3x+5+xx-1=xx+2-3

Lesson 7-7 Multiplying Polynomials

Find each product.

1)  (d+2)(d+5)

2)  (2x-5)(x+6)

3)  (-n+2)(-2n2+n-1)

4)  (x2+x+1)(x2-x-1)

Lesson 7-8 Special Products

Find each product.

1)  t+72

2)  w-12(w+12)

3)  q-4h2

Lesson 8-1 Monomials and Factoring

Factor each monomial completely.

1)  240mn

2)  -231xy2z

Find the GCF of each set of monomials.

3)  4xy, -6x

4)  -14xy, -12y, -20x

Lesson 8-2 Using the Distributive Property

Use the Distributive Property to factor each polynomial.

1)  10a2+40a

2)  2m3n2-16mn2+8mn

3)  2ax+6xc+ba+3bc

4)  2e2g+2fg-4e2h-4fh

Solve each equation. Check your solutions.

5)  aa-9=0

6)  2y+6y-1=0

7)  10x2-20x=0

8)  15a2=60a

Lesson 8-3 Quadratic Equations: x2+bx+c=0

Factor each trinomial.

1)  x2-9x+14

2)  s2+15s+36

3)  a2-9a-36

4)  k2-27k-90

Solve each equation. Check your solution.

5)  a2+3a-4=0

6)  n2-9n=-18

7)  x2-57=16x

8)  -20y+19=-y2

Lesson 8-4 Quadratic Equations: ax2+bx+c=0

Factor each trinomial, if possible. If the trinomial cannot be factored using integers, write prime.

1)  4a2+4a-63

2)  5x2-17x+14

3)  2n2-11n+13

4)  10x2-20xy+10y2

Solve each equation. Check your solutions.

5)  8t2+32t+24=0

6)  4x2-4x-4=4

Lesson 8-5 Quadratic Equations: Differences of Squares

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

1)  x2-9

2)  75r2-48

Solve each equation by factoring. Check your solutions.

3)  4x2=16

4)  9n2-4=0

Lesson 9-1 Graphing Quadratic Functions

Use a table of values to graph each function. State the domain and range.

1)  y=x2+6x+8

2)  y=-x2+3x

X / Y
X / Y

y-intercept: ______

Domain: ______

Range: ______

y-intercept: ______

Domain: ______

Range: ______

Find the vertex, the equation of the axis of symmetry, and the y-intercept.

3)  y=-x2+2x-3

4)  y=3x2+6x+3

Consider each equation.

a.  Determine whether the function has maximum or minimum.

b.  State the maximum or minimum value.

c.  Write the domain and range of the function.

5)  y=4x2-1

6)  y=-x2-1

Lesson 9-2 Solving Quadratic Equations by Graphing

Solve each equation by graphing.

1)  a2-25=0

2)  x2+3x+27=0

3)  b2-18b+81=0

4)  –y2-3y+10=0

Lesson 9-5 Solving Quadratic Equations by Using the Quadratic Formula

Solve each equation by using the Quadratic Formula. Round to the nearest tenth if necessary.

1)  c2+6=-5c

2)  2t2-t-15=0

3)  t2+16=0

4)  3k2+2=-8k

State the value of the discriminant for each equation. Then determine the number of real solutions of the equation.

5)  3f2+2f=6

6)  3w2-2w+8=0

7)  4r2-12r=-9