ST 524NCSU - Fall 2007

Augmented Analysis

Augmented designs

Augmented designs also use grids or incomplete blocks to remove some field variation from the plot residuals. In an augmented design, a large set of experimental lines is divided into small incomplete blocks. In each incomplete block, a set of checks is included; every check occurs in each incomplete block, but the experimental lines are included in only one block. Because the design is unreplicated, the repeated checks are used to estimate the error mean square and the block effect. The block effect is estimated from the repeated check means and then removed from the means of the test varieties. This reduces error and increases precision somewhat. However, the repeated checks used to estimate block effects add a substantial number of plots to the trial. Block effects could also be estimated as effectively from the means of the test varieties in each block. This would save considerable space and labor. In general, augmented designs have few advantages over unreplicated nurseries in which block effects are estimated without repeated checks ().

Check: Stork (St), Cimmarron (Ci), Waha (Wa) - Durum Wheat species – replicated in each block

6 Blocks – 30 selection lines – 3 checks – 8 plots per block

Number of observations: 30 + 6*3 = 48

Check

Selection

Mean difference

?

Block as random effect – PROC GLM

procglmdata=a;

class block check selection;

model yield =block selection ;

random block /test;

lsmeans selection/stderr;

run;

The GLM Procedure

Class Level Information

Class Levels Values

block 6 I II III IV V VI

check 2 check lines

selection 33 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 4 5 6 7

8 9 Ci St Wa

Number of Observations Read 48

Number of Observations Used 48

The GLM Procedure

Dependent Variable: yield

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 37 19594659.36 529585.39 5.81 0.0027

Error 10 911026.56 91102.66

Corrected Total 47 20505685.92

R-Square Coeff Var Root MSE yield Mean

0.955572 11.71349 301.8322 2576.792

Source DF Type I SS Mean Square F Value Pr > F

block 5 15498754.42 3099750.88 34.02 <.0001

selection 32 4095904.94 127997.03 1.40 0.2930

Source DF Type III SS Mean Square F Value Pr > F

block 5 6968486.444 1393697.289 15.30 0.0002

selection 32 4095904.944 127997.030 1.40 0.2930

The SAS System 10:02 Thursday, November 15, 2007 83

The GLM Procedure

Source Type III Expected Mean Square

block Var(Error) + 3 Var(block)

selection Var(Error) + Q(selection)

The GLM Procedure

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: yield

Source DF Type III SS Mean Square F Value Pr > F

block 5 6968486 1393697 15.30 0.0002

selection 32 4095905 127997 1.40 0.2930

Error: MS(Error) 10 911027 91103

Least Squares Means

Standard

selection yield LSMEAN Error Pr > |t|

1 2260.22222 341.18756 <.0001

10 2567.88889 341.18756 <.0001

11 3054.88889 341.18756 <.0001

12 1632.22222 341.18756 0.0007

13 2387.88889 341.18756 <.0001

14 2401.88889 341.18756 <.0001

15 2323.88889 341.18756 <.0001

16 2769.88889 341.18756 <.0001

17 2568.88889 341.18756 <.0001

18 2562.22222 341.18756 <.0001

19 2890.22222 341.18756 <.0001

2 2329.88889 341.18756 <.0001

20 2344.88889 341.18756 <.0001

21 2962.88889 341.18756 <.0001

22 2701.88889 341.18756 <.0001

23 2444.88889 341.18756 <.0001

24 2629.88889 341.18756 <.0001

25 2784.22222 341.18756 <.0001

26 2851.88889 341.18756 <.0001

27 2816.22222 341.18756 <.0001

28 1862.22222 341.18756 0.0003

29 2162.22222 341.18756 <.0001

3 2901.88889 341.18756 <.0001

30 2801.88889 341.18756 <.0001

4 2864.88889 341.18756 <.0001

5 2024.22222 341.18756 0.0001

6 1822.88889 341.18756 0.0003

7 2512.22222 341.18756 <.0001

8 2527.88889 341.18756 <.0001

9 1942.88889 341.18756 0.0002

Ci 2725.66667 123.22247 <.0001

St 2759.16667 123.22247 <.0001

Wa 2677.83333 123.22247 <.0001
Proc Mixed – Block random effect KR correction degrees of freedom and standard errors.

procmixeddata=a method=reml; ;

class block check selection idchk;

model yield = selection /ddfm=kr;

random block;

lsmeans selection ;

estimate "1 lsmn n" intercept 1 selection 100 ;

estimate "1 lsmn n" intercept 1 selection 100|block 000001 ;

estimate "St lsmn" intercept 1

selection 0000000000

0000000000

0000000000

010/divisor=1 ;

estimate "St lsmn n" intercept 6

selection 0000000000

0000000000

0000000000

060 |block 111111 /divisor=6 ; ;

estimate "1 vs 12" selection 100 -1;

estimate "1 vs 10" selection 1 -1;

estimate "1 vs 10 n" selection 1 -1 | block 0000 -11 ;

estimate "1 vs St broad"

selection 6000000000

0000000000

0000000000 0 -60 /divisor=6 ;

estimate "1 vs St narrow"

selection 6000000000

0000000000

0000000000

0 -60 |block -1 -1 -1 -1 -15/divisor=6;

estimate "Wa vs St broad"

selection 0000000000

0000000000

0000000000 0 -66/divisor=6 ;

run;

OUTPUT

The Mixed Procedure

Model Information

Data Set WORK.A

Dependent Variable yield

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class Levels Values

block 6 I II III IV V VI

check 2 check lines

selection 33 1 10 11 12 13 14 15 16 17 18

19 2 20 21 22 23 24 25 26 27

28 29 3 30 4 5 6 7 8 9 Ci St

Wa

idchk 2 0 1

Dimensions

Covariance Parameters 2

Columns in X 34

Columns in Z 6

Subjects 1

Max Obs Per Subject 48

Number of Observations

Number of Observations Read 48

Number of Observations Used 48

Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 245.51933126

1 1 232.87821020 0.00000000

The Mixed Procedure

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

block 434198

Residual 91103

Fit Statistics

-2 Res Log Likelihood 232.9

AIC (smaller is better) 236.9

AICC (smaller is better) 237.9

BIC (smaller is better) 236.5

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

selection 32 10.1 1.38 0.3022

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

1 lsmn b 2309.43 434.86 14.5 5.31 <.0001

1 lsmn n 3013.00 301.83 10 9.98 <.0001

St lsmn 2759.17 295.89 6.34 9.33 <.0001

St lsmn n 2759.17 123.22 10 22.39 <.0001

1 vs 12 628.00 426.86 10 1.47 0.1720

1 vs 10 -175.12 493.69* 10.3 -0.35 0.7299

1 vs 10 n 1720.00 426.86 10 4.03 0.0024

1 vs St broad -449.74 363.21 10.3 -1.24 0.2432

1 vs St narrow 253.83 326.02 10 0.78 0.4542

Wa vs St broad -81.3333 174.26 10 -0.47 0.6507

> sqrt((0*434198+91103)/6)

[1] 123.2227

> sqrt(2*91103/1)

[1] 426.8559

> sqrt(8*91103/3) * See formula in handout

[1] 492.8908

> sqrt(7*91103/6)

[1] 326.0166

> sqrt(19*91103/18)

[1] 310.1037

> sqrt(28*91103/18)

[1] 376.4516 * difference between an adjusted selection mean and a check mean. See formula in handout

Least Squares Means

The Mixed Procedure

Least Squares Means

Standard

Effect selection Estimate Error DF t Value Pr > |t|

selection 11 3076.14 434.86 14.5 7.07 <.0001

selection 12 1681.43 434.86 14.5 3.87 0.0016

selection 13 2388.09 434.86 14.5 5.49 <.0001

selection 14 2402.09 434.86 14.5 5.52 <.0001

selection 15 2333.90 434.86 14.5 5.37 <.0001

selection 16 2686.55 434.86 14.5 6.18 <.0001

selection 17 2569.09 434.86 14.5 5.91 <.0001

selection 18 2564.89 434.86 14.5 5.90 <.0001

selection 19 2939.43 434.86 14.5 6.76 <.0001

selection 2 2246.55 434.86 14.5 5.17 0.0001

selection 20 2366.14 434.86 14.5 5.44 <.0001

selection 21 2879.55 434.86 14.5 6.62 <.0001

selection 22 2702.09 434.86 14.5 6.21 <.0001

selection 23 2466.14 434.86 14.5 5.67 <.0001

selection 24 2639.90 434.86 14.5 6.07 <.0001

selection 25 2786.89 434.86 14.5 6.41 <.0001

selection 26 2852.09 434.86 14.5 6.56 <.0001

selection 27 2818.89 434.86 14.5 6.48 <.0001

selection 28 1864.89 434.86 14.5 4.29 0.0007

selection 29 2211.43 434.86 14.5 5.09 0.0001

selection 3 2911.90 434.86 14.5 6.70 <.0001

selection 30 2811.90 434.86 14.5 6.47 <.0001

selection 4 2874.90 434.86 14.5 6.61 <.0001

selection 5 2026.89 434.86 14.5 4.66 0.0003

selection 6 1844.14 434.86 14.5 4.24 0.0008

selection 7 2561.43 434.86 14.5 5.89 <.0001

selection 8 2444.55 434.86 14.5 5.62 <.0001

selection 9 1964.14 434.86 14.5 4.52 0.0004

selection Ci 2725.67 295.89 6.34 9.21 <.0001

selection St 2759.17 295.89 6.34 9.33 <.0001

selection Wa 2677.83 295.89 6.34 9.05 <.0001

> sqrt((1*434198+91103)/6)

[1] 295.8888


Alpha-lattice designs

Alpha-lattice designs are replicated designs that divide the replicate into incomplete blocks that contain a fraction of the total number of entries. Genotypes are distributed among the blocks so that all pairs occur in the same incomplete-block in nearly equal frequency. The design permits removal of incomplete-block effects from the plot residuals and maximizes the use of comparisons between genotypes in the same incomplete-block.

How effective are alpha-lattice designs in increasing the precision of genotype means estimated from rainfed rice variety trials? There are several ways to address this question. One way is to compare the SEM or a related statistic like the LSD for trials laid out as alpha-lattices, and analyzed both as alpha-lattices and RCBDs.

().

Thursday November 15, 2007 Augmented Analysis1