Automatic Censoring Best Linear Unbiased Constant False Censoring and Alarm Rates
DetectorinLognormalBackground
Souad CHABBI(1),Toufik LAROUSSI(1)and Mourad BARKAT(2),IEEEFellow
(1)Département d’Electronique,Université MentourideConstantine, Laboratoire SISCOM,Constantine 25010,Algérie
(2)Department of ComputerEngineering,King Saud University,Riyadh,KSA.
E-mails: ,d
Abstract
We dealwiththe problem ofautomaticcensoringwith constantfalse censoringrate (CFCR)andautomatictarget detectionwithconstantfalsealarm rate(CFAR),i.e., CFCAR procedures,against non-stationary Lognormal clutter with unknown scale and shape parameters. We show that, in multiple target situations, automatic censoring detectors outperform those based on fixed point censoring.Forthat,westudy thecensoringanddetection performancesofthe AutomaticCensoringBestLinear Unbiased(ACBLU)CFCAR detector.Thecensoringand detectionalgorithmsareatwoinone built detector.They selectrepeatedlyasuitablesetoftherankedreference cellstoestimatetheunknownbackgroundlevelandset theadaptivethresholdaccordingly.To thisend,the Lognormalprobabilitydensityfunction(pdf)is reducedto aNormal one, viaalogarithmictransformation,andthe parametersareestimatedusingthe bestlinear unbiased estimators (BLUEs). Performances of this detector are carried outusing MonteCarlosimulations.
1.Introduction
The detection performance,inradarsystems,isrelatedto target models and background environments. The detectionprobability(Pd) is shownto besensitivetothe non-stationary clutter statistics andtothe number of spurioustargets that may appearinthereturnechos.The most important concernof suchsystems is tomaintainthe FAR at a desired constant value while developing adaptive thresholdprocedures thatguarantyarelative immunity against all kind ofbackground heterogeneities.
In multiple target situations, to circumvent the masking effects, fixed pointcensoring CFAR detectors based on order statistics [1-9] have been known to improvethedetectionperformancebyexcisingthe higher unwanted reference cells.However,these detectors give goodresults onlyifthenumberofinterferingtargets presentinthereferencewindowisknownapriori,which isnotalways availableinrealapplications.Forinstance, Figure1showsthePd versusthesignal-to-clutterratio (SCR), in presence of sixinterferingtargets havingan interference-to-clutterratioICR=SCR. Thatis,thisisthe case of a heterogeneous Lognormal environment for whichthereal numberofinterferencesexceedstheir a priori knownnumber.Consequently,aconsiderable degradation in the detection performance of the fixed point censoringBLU-CFARdetector [9] isobserved.
In ordertoimprovethePdinmultipletargetsituations, when no prior knowledgeof thenumber ofunknown
Figure1.DetectionprobabilitiesofaSwerlingItarget againstSCRfortheBLU-CFARdetectorinpresenceof sixinterfering targets in Lognormal clutter.
power outliers inthe referencecellsismadeavailable,the automaticcensoringtechniqueshave, fortheirpart,many contributedinthe improvementofthe detection performanceofthesedetectors.The well-known approaches proposed inthe literature are found in [10-12] fora Gaussian clutter, [13-14] for aLognormalclutterand [15-16] foraWeibullclutter. Therein,theauthors use orderedstatisticstodiscriminatebetween homogeneous andheterogeneousenvironments.Whereas,[13-15] use linearbiparametricadaptivethresholds basedonasimple approach forthefirstand ontheMaximum Likelihood Estimators(MLEs)forthe letter.[14-16] employthe Weber-Haykin (WH)adaptivethreshold toavoidthe distribution parameters estimation.
In thiswork,we studythecensoring anddetection performancesoftheACBLU-CFCAR detector in Lognormalclutterandmultipletargetsituations,without
anypriorknowledgeofneitherthenon-stationaryclutter
statisticsinwhichtheradaroperates nor thenumber of outliersthatmay be presentinthereferencewindow.The censoringand detectionalgorithmsareatwoinonebuilt detector,they usethesameadaptivethreshold. Whilethe first algorithm operates censoring under CFCR, the second performsdetection underCFAR. Based onthe censoringalgorithm,thedetectionalgorithm selects repeatedlyasuitablesetoftheranked referencecells surroundingthecell undertest toestimatetheunknown backgroundlevelandset theadaptivethreshold accordingly.Todothis,from alogarithmicamplifier,the Lognormal pdf is converted to a Normal one, i.e., location-scale (LS) type [9, 17], and then the BLUEs of location –scaleparameters aredeveloped to adjust
Target
Y Log. X
absent(H0).gk isthedetectionthresholdcoefficienttobe
Clutter
LED Amplifier X1
… XN/2
X0 XN/2+1 … XN
set to achieveadesiredPfagiven by
DesignPfc
X(1)≤···≤X(p)≤X(p+1)≤···≤X(N)
CensoringAlgorithm
DisignPfa
=Prob{X0
/H0
Tˆ
k
(2)
k TogetlinearestimatorsoftheNormallocation,µˆN−k,
DesignPfa
X(1)≤ X(2)≤···≤X(N-k)
andthescale,σˆN−k,parameters,let
X(i)s;i =1,K,N be
DetectionAlgorithm
orderedreferencesamplesinascendingorderofaNormal
H orH
distributionwithunknownparameters
µˆN−k
and
σˆN−k,
0 1
basedonkhighestpossiblycensoredunwantedsamples
Figure2. BlockdiagramoftheACBLU-CFCARdetector.
censoringand detection thresholds. CFCAR is thus achievedwhentheclutterislocallyhomogeneoussuch thatresilience againstlocalheterogeneitiesisguaranteed since BLUE lendsitself to censoring [9].
representing interfering targets [9]
N−k
µˆN−k =∑ai(N,k)X(i)
i=1
and
(3)
2.Computational Routines
N−k
σˆN−k =∑bi(N,k)X(i)
i=1
(4)
Many research works on modeling real applications
where
ais
and
bis
are weights that depend only on
proved that an excellent agreement with observed
intensityofthedatacanbeachievedusingaLognormal distribution.Itisadistributionofarandomvariabley
characterized by a scale parameter,µ, and a shape
system parameters,namelyNandk.Aftercensoringthek highestunwantedsamples, the(N-k) remaining onesare usedtoestimatetheenvironmentlevel.Inahomogeneous
environment,k=0 ,theentirereferencewindowisused.
parameter,σ,with
y =exp(x)
wherexisfromaNormal
These weights must be calculated once and for all
distributioncharacterizedbyalocationparameter,µ,and
accordingtoasuitableoptimizationcriterion.
µˆN−k
and
ascaleparameter,σ,[9].ReferringtoFigure2,alltarget
returnsareassumedtobeembeddedinLognormalclutter.
Thelinearenvelopedetector(LED)matchedfilteroutputs
σˆN−k
are equivarient if and only if[8,9]
N−k
Yis
are passed through a logarithmic amplifier to get
∑ai =1
i=1
(5)
Normaldistributedrandomvariables
Xis,beforestoring
and
them serially into a tapped delay line of length N+1;
corresponding to N reference cells surrounding the cell undertestX0. Thenaturallogarithm is assumed.The principaladvantageinherenttothe logarithmic transformationistheuseofLStypedistributiontoget
N−k
∑bi=0
i=1
Equivalently,theestimatorsµˆ(X)
(6)
andσˆ(X)oflocation-
equivariantlocation-scaleparameters.Inotherwords,we
scaleparametersbasedonsamplesXaresaidequivariant
would like to consider adaptive thresholds that ensure
if [8,9,17], for real constants r,
r∈(−∞,∞), and s,
constantprobabilityoffalsecensoring(Pfc)andconstant probability of false alarm (Pfa) for any values of the
s∈(0+,∞),
µˆ(X')=sµˆ(X)+r
and
σˆ(X')=sσˆ(X),
distributionparameters,i.e.,CFCAR.Indoingthis,we
whereX'= sX+r1.
assume that the
Yis
are independent and identically
Among all linear estimators, we focus on the best
linear unbiased estimators (BLUEs) to improve the
distributed(IID).Hence,thetransformedvariates
are also IID.
Xis,
detectionperformance[9].Theseestimatorsareunbiased, equivariant and minimum variance among all linear
estimators.Let
Z(i)s;i=1,K,N−k
beorderedvariates
2.1.Computational DetectionRoutine
TheACBLU-CFCARdetectionalgorithmisbasedonthe
fromastandardNormaldistribution(µ=0,σ=1),EZits known mean vector, B its known covariance matrix,
following hypothesis test[9],
D =[1,EZ]anauxiliary
[(N−k)x2]matrix.Recallthat,
eachvalueE(Z(i))of thevectorEZcanbecomputedas[1]
H1
> ∞
X0 Tˆg
=µˆN−k +gkσˆN−k
(1)
⎛N⎞
N−i
i−1
< k E(Z(i))=i⎜
⎟ ∫Z(i)[1−F(Z(i))]
[F(Z(i))]
f(Z(i),0,1)dZ(i)
(7)
H0
A target is declared present (H1) if
X0 exceeds the
where
⎝ i⎠−∞
F(Z(i))
is the cumulative distribution function
detectionthreshold
Tgk
.Otherwise,atargetisdeclared
(cdf) ofthestandard Normalpdff(Z
(i)
,0,1).
The BLUEsµˆN−k andσˆN−k
are given by [9]
⎡
⎡µˆN−k⎤ = DTB−1D−1DTB−1X=⎡a1 KaN−k⎤⎢
X(1)
⎤
⎥ (8)
⎢ ⎥ ( )
⎢ ⎥⎢ M ⎥
⎣σˆN−k⎦
⎣b1 KbN−k⎦⎢
⎣
⎥
(N−k)⎦
2.2.Computational CensoringRoutine
Thecensoringalgorithm usesthereferencecellsrankedin anascending order,according totheirmagnitudes.The initial population represented by the p lowest cells is assumedtobe homogeneous.Thus,pmust becarefully selected to yield a good performance in both homogeneous andheterogeneousenvironments.Itmustbe aslargeaspossibletoimprovedetectionandassmallas
Figure3.Probability of hypothesis test error of the
possibletodiscardanyclutter-plus-interferencesamples
[12].Thecensoringalgorithmconsistsofthefollowing tasks:
ACBLU-CFCAR detector, asa function of
ˆ
γc .
T is not available,g is foundresortingof Monte Carlo
k
Set c=0 (Auxiliary index)
Set d=1 (Homogeneoushypothesis)
simulation. Furthermore, the coefficient γc
of the
While c≤ N-p and d=1
censoringthresholdTˆ
c
isgivensothatalowprobability
Computeµˆp+c
If c N-p
andσˆp+c
(from(3) and (4))
ofhypothesistesterror,ec,isachievedinahomogeneous environment. Particularly, ecis defined as [13]
Selectγc (to satisfy design Pfc)
nhH
ec=Prob{X
(p+c+1)
/hHTˆ
k
}c=0,1,K,N−p−1
ˆ
(10)
X(p+c+1)
Tˆγ
< c
=µˆp+c+γcσˆp+c
(9) Here also, ananalyticalexpression of thepdf ofTγ
is not
hH
If nhH,
Set d = 0
available. Thus, ec is obtained through Monte Carlo
simulationsforeachvalueofcsuchthatthedesiredPfcis
maintained at each stepby setting
End
End
e =e
0 1
=L=e
N−p−1
=DesignP
fc
(11)
End
c=c+1Figure3showsec asafunctionof environment for (N, p)=(36,24).
γc inahomogeneous
c=c-1
k=N-p-c (Numberofinterferingtargets) 4. PerformanceAssessment
γc is the censoring threshold coefficient chosen to achievethedesiredPfc. Thenonhomogeneous hypothesis (nhH) refers to a heterogeneous environment, i.e., the
Here, we evaluate the performance of the ACBLU- CFCARdetectorwithabatteryofsimulationtests.We dealwiththesingle-pulsedetection,whichcorrespondsto
samples
X(p+c+1),...,X(N)
correspond to clutter-plus
bothSwerlingIandSwerlingIIfluctuatingmodels.We
interferencesampleswhilethehomogeneoushypothesis
assume the presence of
0≤m≤N−p
unknown
(hH)referstoahomogeneousenvironment,i.e.,X(p+c+1)
isaninterference-freecluttersample.Thesuccessivetests,
interferingtargets;m=0correspondstothehomogeneous case. The thermal noise isnegligible.
startingby
c=0,i.e.,the
(p+1)th
orderedsample,are
4.1.CensoringProbabilities
repeateduntilthereference cellunderinvestigationis declaredasaclutter-plus-interferencesampleorwhenall
theN−p highest samples are used up, i.e.,c=N−p.
3. ThresholdsSelection
Theimplementation oftheACBLU-CFCARdetector requiresthecomputationof thecensoring anddetection thresholds. Since an analyticalexpression of thepdf of
Theeffectivenessoftheautomaticcensoringalgorithm hasbeen first assessed,ina homogeneous environment. Table1 givesthecensoringprobabilitiesintheabsence of interferencesforPfc =10-2 and10-3.Itisclearthatthe censoring probabilities,i.e.,Prob{k=m},ismaximalfor k=0,whichcorrespondstothe event“anyreferencecellis censored”. Otherwise(k=0),wecan note thatwhenPfc decreases, thecensoringprobabilities tend to0.
Table1.Censoringprobabilities of the censoring algorithmin ahomogeneous environment for(N,p) =(36, 24).
fc
Figure4.Under-censoring probabilities against ICR
for the censoring algorithm with m and σ as
parameters.
Figure5.Under-censoring probabilities against ICR
for the censoring algorithm with σ and Pfc as
parameters.
In the presence of interfering targets, the censoring algorithm is characterized by the over-censoring
probability,P0 =Prob{k≥m}, and the under-
censoringprobability,Pu =Prob{km}. NotethatPu
may degrade the censoring and thus the detection
performances. Figures 4 and 5 show the Pu of the
Figure6.DetectionprobabilitiesagainstSCRforthe
Ideal,ACBLU-CFCARandBLU-CFAR detectorsina homogeneousenvironment withσas aparameter.
Figure7.DetectionprobabilitiesagainstSCRforthe
ACBLU-CFCAR andBLU-CFAR detectors inmultiple target situations with mandσas parameters.
4.2.Detection Probabilities
Inthissection, weshouldevaluatethedetection performance of the ACBLU-CFCAR detector by means of abattery ofsimulation tests.
censoringalgorithmversusICR,withm, σ
andPfc as
4.2.1. Homogeneous Environment
parameters.NotethatPu increaseswhenmincreases anddecreaseswhenPfc increases.Ontheotherhand, independentlyofm andPfc,anincreaseintheshape parameterσengendersanincrease inPu. Finally,the morepowerfultheinterferences,the closertozeroPuis. Itwillbeseeninthenextsubsectionthatadecreasein Puimprovesthedetectionperformance.From these Figures, wecanconcludethat theshape parameterσhas an important influenceonthecensoringperformance.
Inabsenceofinterferingtargets,Figure6showsthe
detection performanceofthe ACBLU-CFCARdetector and the BLU-CFAR [9] detector. The results are
compared withthose oftheidealdetector(N→∞).We
note that both ACBLU-CFCAR and BLU-CFAR
detectors give the same detection performance. Note thatanincreaseinσdegrades thedetectionperformance ofall kindof detectors.
4.2.2. Multiple Target Situations
In presence of interferingtargets,Figure7showsthePd ofthe ACBLU-CFCARandBLU-CFARdetectors againstSCR. ItisclearthattheproposedACBLU- CFCARdetectoralwaysoutperformstheBLU-CFAR
detectorforanynumberof interferences.TheCFAR- Loss getshigherwheneverthenumberofinterferences increases.Thisisprimarilyduetothe over-censoring characteristicoftheACBLU-CFCARdetector.Thishas adirectimpacton thehomogeneity of theresidual population.
5.Conclusion
Inthis paper,wehaveanalyzedandevaluatedthe censoringand detection performancesofthe ACBLU- CFCAR detectorinhomogeneousandheterogeneous Lognormalclutter. We havecompareditsdetection performance with that of the fixed point censoring BLU-CFAR detector.Simulationresultsshowthatthe detection performanceof bothdetectors isthesamein uniform clutter.However,inmultipletargetsituations, the ACBLU-CFCAR detector outperformsthe BLU- CFARdetector.
6.References
[1]M.Barkat,Signal detectionandestimation,2nded., MA: Artech House, Norwood, 2005.
[2]J.T.Rickard,and G.M.Dillard,“Adaptive detection algorithmsformultipletarget situations,”IEEETrans., Aerosp.Electron.Syst.,Vol.AES-13,N°4,pp.338-
343,Jul.1977.
[3] H.Rohling,“RadarCFAR ThresholdinginClutter and Multiple Target Situations,” IEEE Trans. Aerospace.Electron.Syst.,Vol.AES-19,N°4,pp.608-
621,Jul.1983.
[4]P. Weber,andS.Haykin,“OrderedstatisticCFAR processing for two-parameterdistributionswithvariable skewness,” IEEE Trans. Aerospace. Electron. Syst., Vol. AES-21, N°6, pp. 819-821, Nov. 1985.
[5]P.P. Gandhi,andS.A.Kassam,“AnalysisofCFAR processorsinnonhomogeneousbackground,” IEEE Trans.Aerospace.Electron. Syst.,Vol.AES-24, N°4, pp.427-445,Jul.1988.
[6] R.Ravid,andN.Levanon,“Maximum-Likelihood CFARforWeibullbackground,”IEEProc.,Vol.139, Pt. F, N°3, pp. 256-263,Jun.1992.
[7]M.B.El Mashade,“Analysis of the censored-mean level CFAR processor in multiple target and
nonuniform clutter,”IEEProc.,RadarSonarNavig., Vol. 142, N° 5, pp. 259-266,Oct.1995.
[8] M.Guida,M.Longo,andM.Lops,“Biparametric LinearEstimation forCFAR againstWeibullClutter,” IEEETrans.Aerospace.Electron.Syst.,Vol.AES-28, N°1, pp. 138-151, Jan. 1992.
[9] M.Guida,M.Longo,andM.Lops,“Biparametric CFAR proceduresforLognormalclutter,”IEEETrans. Aerospace.Electron.Syst.,Vol.AES-29,N°3,pp.798-
809,Jul.1993.
[10]S.D. Himonas, and M. Barkat, “Automatic censoredCFAR detectionfor nonhomogeneous environments,” IEEETrans.,Aerosp.Electron.Syst., Vol. AES-28, N°1, pp. 286-304, Jan. 1992.
[11] S.D. Himonas, “Adaptive censored greatest-of
CFARdetection,”IEEProc.,Vol.139,Pt.F,N°3,pp.
247-255, Jun.1992.
[12] A.Farrouki,andM.Barkat,“Automaticcensoring CFARdetectorbasedon ordereddatavariability for nonhomogeneous environments,” IEEProc.,Radar Sonar Navig., Vol. 152, N° 1, pp. 43-51, Feb. 2005.
[13] M.N.Almarshad,S.A.Alshebeili,andM.Barkat, “AForwardautomaticcensoredcell-averaging detector for multiple target situations in Log-Normal clutter,” World Academy of Science, Engineering and Technology 24,WASET,Vol.17, Dec. 2006.
[14] M.N.Almarshad,M.Barkat,andS.A.Alshebeili, “AMonteCarlosimulationfortwo novelautomatic censoringtechniques of radarinterferingtargetsinLog- normalclutter,”SignalProc.,Vol.88,N°3,pp.719-
732, Mar. 2008.
[15]S. Chabbi, T. Laroussi, and M. Barkat, “MLE- based order statisticautomatic CFCARdetection in Weibull background,” Advances in Computational Tools for Engineering Applications, ACTEA’09, pp.
541-546, Lebanon, Jul.2009.
[16] S.Chabbi,T.Laroussi,andM.Barkat,“Weber- Haykin based automaticcensoringand detectionin Weibullbackground,” 10thIEEEInternational ConferenceonSignalProcessing,ICSP’10,pp.1919-
1922,China, Oct.2010.
[17] Y.Norouzi,F.Gini,M.M.Nayebi,andM.Greco, “Non-coherent radar CFAR detection based on goodness-of-fit tests”, IETRadar,SonarNavig.,Vol.1, N°2, pp. 98-105, Apr. 2007.