UNIT #3AP CHEM HW PACKET

Chapter_5: Gases

Section I: Multiple Choice

1) When a sample of oxygen gas in a closed container of constant volume is heated until its absolute temperature is doubled, which of the following is also doubled?

(A) The density of the gas
(B) The pressure of the gas
(C) The average velocity of the gas molecules
(D) The number of molecules per cm3
(E) The potential energy of the molecules

2) At 25 °C, a sample of NH3 (molar mass 17 grams) effuses at the rate of 0.050 mole per minute. Under the same conditions, which of the following Gas effuses at approximately one-half that rate?

(A) O2 (B) He
(C) CO2
(D) Cl2
(E) CH4

3) Equal masses of three different ideal Gas, X, Y, and Z, are mixed in a sealed rigid container. If the temperature of the system remains constant, which of the following statements about the partial pressure of gas X is correct?

(A) It is equal to 1/3 the total pressure
(B) It depends on the intermolecular forces of attraction between molecules of X, Y, and Z.
(C) It depends on the relative molecular masses of X, Y, and Z.
(D) It depends on the average distance traveled between molecular collisions.
(E) It can be calculated with knowledge only of the volume of the container.

4)When the actual gas volume is greater then the volume predicted by the ideal gas law, the explanation lies in the fact that the ideal gas law does NOT include a factor for molecular.

(A) volume
(B) mass
(C) velocity
(D) attractions
(E) shape

5) A sample of 9.00 grams of aluminum metal is added to an excess of hydrochloric acid. The volume of hydrogen gas produced at standard temperature and pressure is

(A) 22.4 liters
(B) 11.2 liters
(C) 7.46 liters
(D) 5.60 liters
(E) 3.74 liters

6) A gaseous mixture containing 7.0 moles of nitrogen, 2.5 moles of oxygen, and 0.50 mole of helium exerts a total pressure of 0.90 atmosphere. What is the partial pressure of the nitrogen?

(A) 0.13 atm
(B) 0.27 atm
(C) 0.63 atm
(D) 0.90 atm
(E) 6.3 atm

7) A sample of an ideal gas is cooled from 50.0 °C to 25.0 °C in a sealed container of constant volume. Which of the following values for the gas will decrease?

I. The average molecular mass of the gas
II. The average distance between the molecules
III. The average speed of the molecules

(A) I only
(B) II only
(C) III only
(D) I and III
(E) II and III

NH4NO3(s) --> N2O(g) + 2H2O(g)

8) A 0.03 mol sample of NH4NO3(s) decomposes completely according to the balanced equation above. The total pressure in the flask measured at 400 K is closest to which of the following?

(A) 3 atm
(B) 1 atm
(C) 0.5 atm
(D) 0.1 atm
(E) 0.03 atm

9) A hydrocarbon gas with an empirical formula CH2 has a density of 1.88 grams per liter at 0 °C and 1.00 atmosphere. A possible formula for the hydrocarbon is

(A) CH2
(B) C2H4
(C) C3H6
(D) C4H8
(E) C5H10

Section II: Free Response

Section II: Free Response

FRQ #1

2 H2O2(aq) → 2 H2O(l) + O2(g)

•The mass of an aqueous solution of H2O2 is 6.951 g. The H2O2 in the solution decomposes completely according to the reaction represented above. The O2(g) produced is collected in an inverted graduated tube over water at 23.4°C and has a volume of 182.4 mL when the water levels inside and outside of the tube are the same. The atmospheric pressure in the lab is 762.6 torr, and the equilibrium vapor pressure of water at 23.4°C is 21.6 torr.

(a) Calculate the partial pressure, in torr, of O2(g) in the gas-collection tube.

(b) Calculate the number of moles of O2(g) produced in the reaction.

(c) Calculate the mass, in grams, of H2O2 that decomposed.

(d) Calculate the percent of H2O2 , by mass, in the original 6.951 g aqueous sample.

(e) What is the oxidation number of the oxygen atoms in H2O2 and the oxidation number of the oxygen atoms in O2.

(f) Write the balanced oxidation half-reaction for the reaction.

FRQ#2

Answer the following questions about carbon monoxide, CO(g), and carbon dioxide, CO2(g). Assume that both gases exhibit ideal behavior.

(a)Draw the complete Lewis structure (electron dot diagram) for the CO molecule and for the CO2 molecule.

(b)Identify the shape of the CO2 molecule.

(c)One of the two gases dissolves readily in water to form a solution with a pH below 7. Identify the gas and account for this observation by writing a chemical equation.

(d)A 1.0 mol sample of CO(g) is heated at constant pressure. Sketch a graph to show the expected plot of volume verses temperature as the gas is heated.

(e)Samples of CO(g) and CO2(g) are placed in 1 L containers at the conditions in the diagram below.

(i) Indicate whether the average kinetic energy of the CO2 is greater than, equal to, or less than the average kinetic energy of the CO molecules. Justify your answer.

(ii) Indicate whether the root-mean-square speed of the CO2 molecules is greater than, equal to or less than the root-mean-square speed of the CO molecules. Justify your answer.

(iii) Indicate whether the number of CO2 molecules is greater than, equal, or less than the number of CO molecules. Justify your answer.

FRQ#3

A rigid 5.00 L cylinder contains 24.5 g of N2(g) and 28.0 g of O2(g)

(a)Calculate the total pressure, in atm, of the gas mixture in the cylinder at 298 K.

(b)The temperature of the gas mixture in the cylinder is decreased to 280 K. Calculate each of the following.

(i) The mole fraction of N2(g) in the cylinder.

(ii) The partial pressure, in atm, of N2(g) in the cylinder.

(c)If the cylinder develops a pinhole-sized leak and some of the gaseous mixture escapes, would the ratio, N2:O2, in the cylinder increase,decrease, or remain the same? Justify your answer.

A different rigid 5.00 L cylinder contains 0.176 mol of NO(g) at 298 K. A 0.176 mol sample of O2(g) is added to the cylinder, where a reaction occurs to produce NO2(g).

(d)Write the balanced equation for the reaction.

(e)What reactant is the limiting reactant? Justify with a calculation.

(f) Calculate the total pressure, in atm, in the cylinder at 298 K after the reaction is complete.

FRQ #4

Represented above are five identical balloons, each filled to the same volume at 25°C and 1.0 atmosphere pressure with the pure gases indicated.

(a)Which balloon contains the greatest mass of gas? Explain.

(b)Compare the average kinetic energies of the gas molecules in the balloons. Explain.

(c)Which balloon contains the gas that would be expected to deviate most from the behavior of an ideal gas? Explain.

(d)Twelve hours after being filled, all the balloons have decreased in size. Predict which balloon will be the smallest. Explain your reasoning.

FRQ#5

A mixture of H2(g), O2(g), and 2 millilitres of H2O(l) is present in a 0.500 litre rigid container at 25°C. The number of moles of H2 and the number of moles of O2 are equal. The total pressure is 1,146 millimetres mercury. (The equilibrium vapor pressure of pure water at 25°C is 24 millimetres mercury.)

The mixture is sparked, and H2 and O2 react until one reactant is completely consumed.

(a)Identify the reactant remaining and calculate the number of moles of the reactant remaining.

(b)Calculate the total pressure in the container at the conclusion of the reaction if the final temperature is 90°C. (The equilibrium vapor pressure of water at 90°C is 526 millimetres mercury.)

(c)Calculate the number of moles of water present as vapor in the container at 90°C.

FRQ#6

(a)From the standpoint of the kinetic-molecular theory, discuss briefly the properties of gas molecules that cause deviations from ideal behavior.

(b)At 25°C and 1 atmosphere pressure, which of the gases below shows the greatest deviation from ideal behavior? Give two reasons for your choice.

CH4SO2O2H2

(c)Real gases approach ideality at low pressure, high temperature, or both. Explain these observations.

FRQ#7

2 HCOONa + H2SO4  2CO + 2H2O + Na2SO4

A 0.964 gram sample of a mixture of sodium formate and sodium chloride is analyzed by adding sulfuric acid. The equation for the reaction for sodium formate with sulfuric acid is shown above. The carbon monoxide formed measures 242 milliliters when collected over water at 752 torr and 22.0°C. Calculate the percentage of sodium formate in the original mixture.

Chapter 9: Properties of Liquids & Solids

Section I: Multiple Choice

Use the following answers for questions 1 – 5:

(A) A network solid with covalent bonding
(B) A molecular solid with zero dipole moment
(C) A molecular solid with hydrogen bonding
(D) An ionic solid
(E) A metallic solid

1. Solid ethyl alcohol, C2H5OH

2. Silicon dioxide, SiO2

3. Silver

4. Diamond

5. Carbon tetrachloride

Use these answers for questions 6-9:

(A) hydrogen bonding
(B) hybridization
(C) ionic bonding
(D) resonance
(E) van der Waals forces (London dispersion forces)

6. Is used to explain why iodine molecules are held together in the solid state

7. Is used to explain why the boiling point of HF is greater than the boiling point of HBr

8. Is used to explain the fact that the four bonds in methane are equivalent

9. Is used to explain the fact that the carbon-to-carbon bonds in benzene, C6H6, are identical

10. CH3CH2OH boils at 78 °C and CH3OCH3 boils at - 24 °C, although both compounds have the same composition. This difference in boiling points may be attributed to a difference in

(A) molecular mass
(B) density
(C) specific heat
(D) hydrogen bonding
(E) heat of combustion

11. The melting point of MgO is higher than that of NaF. Explanations for this observation include which of the following?

I. Mg2+ is more positively charged than Na+
II. O2¯ is more negatively charged than F¯
III. The O2¯ ion is smaller than the F¯ ion

(A) II only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

12. Questions 12-14 refer to the phase diagram below of a pure substance.

(A) Sublimation
(B) Condensation
(C) Solvation
(D) Fusion
(E) Freezing

12. If the temperature increases from 10° C to 60° C at a constant pressure of 0.4 atmosphere, which of the processes occurs?

13. If the temperature decreases from 110° C to 40° C at a constant pressure of 1.1 atmospheres, which of the processes occurs?

14. If the pressure increases from 0.5 to 1.5 atmospheres at a constant temperature of 50° C, which of the processes occurs?

Section II: Free Response

FRQ #1

The phase diagram for a pure substance is shown above. Use this diagram and your knowledge about changes of phase to answer the following questions.

(a)What does point V represent? What characteristics are specific to the system only at point V?.

(b)What does each point on the curve between V and W represent?

(c)Describe the changes that the system undergoes as the temperature slowly increases from X to Y to Z at 1.0 atmosphere.

(d)In a solid-liquid mixture of this substance, will the solid float or sink? Explain.

FRQ #2

For each of the following, use appropriate chemical principles to explain the observation.

(a)At room temperature, NH3 is a gas and H2O is a liquid, even though NH3 has a molar mass of 17 grams and H2O has a molar mass of 18 grams.

(b)C (graphite) is used as a lubricant, whereas C (diamond) is used as an abrasive.

(c)Pouring vinegar onto the white residue inside a kettle used for boiling water results in a fizzing/bubbling phenomenon.