APPhysics C- MechanicsName
Due: September 2, 2016
Time Allotted: 8- 10 hours
BROAD RUN HIGH SCHOOL AP PHYSICS C: MECHANICS
SUMMER ASSIGNMENT
2016-2017
Teacher: Mrs. Kent
Textbook: Physics for Scientists and Engineers, 9th Edition, Serway; Jewett, Chapters 1-14
Welcome to APPhysicsC: Mechanics, I look forward to working with you in September.
This course is unusual in that we will only be studying the first semester of a college physics course: Kinematics and Dynamics. It is also unusual in that it will be taught on the honors college level as a calculus based course.
This assignment is designed to refresh the concepts and skills in which you acquiredproficiency and understanding during high school physics
IF you get stuck on a fewproblems, simply do the bestyoucan,butshow some work/effortinordertoreceive credit.
Please refer to the following sections in your textbook to work on this packet:
Chapter 1 Physics and Measurement
Chapter 2Motion in One Dimension
Chapter 3Vectors
APPENDIX B: Mathematics Review pp. A-4 to A-21.
***MITx’s EdX
PLEASE ENROLL FREE ONLINE “MECHANICS ReView”:
AP PHYSICS C: MECHANICS COURSE (15 weeks at your pace)
SUBMIT your MIT Certificate of Completion for a grade when you complete the course.
- Watch the Kinematics Video Lessons under AP Physics C
- University of Illinois:
- Watch “Lectures” 1, 2, & 3 under “Linear Dynamics”
Sections:
/ Review Topic / Problems / Pages / Resources- Algebra
- Measurements
- Geometry
- Trigonometry
- Vector Review
- Resultants
- Vector Addition
- Components
- Trig and Vector Combo
- More Practice with Resultants
- Vector Applications
- Calculus (for students who took this course only)
- Algebra
a.SIMPLIFICATION.Placetheanswerinscientificnotationwhenappropriateandsimplifytheunits(Scientificnotationisusedwhenittakeslesstimetowritethantheordinarynumberdoes. Asanexample200iseasiertowritethan2.00E2,but2.00E8iseasierto writethan200,000,000).Doyourbesttocancelunits,andattempttoshowthesimplifiedunitsinthefinalanswer.
b.OftenproblemsontheAPexamaredonewithvariablesonly.Solveforthevariableindicated.
c.Usingyourcalculatortosolveequations:Sometimesitiseasiertouseyourcalculatortosolveanequationratherthanalgebra.Todothis,grapheachsideofthe=signasadifferentfunction.Thenuseyourcalculatortofindthepoint(s)wherethegraphsintersect.
a.sincos22
b.sincossin1
- “Agreement of units” of Measurement. Scientists use the mks system (SI system) of units. mks stands for meter-kilogram-second. Master how to make the following conversions:
kilometers(km) ↔ meters(m) gram(g)↔kilogram(kg)centimeters(cm) ↔ meters(m) Celsius(oC)↔Kelvin(K)
millimeters(mm) ↔ meters(m) atmospheres(atm)↔Pascals(Pa)
nanometers(nm) ↔ meters(m) liters(L)↔cubicmeters(m3)
micrometers(m) ↔ meters(m)
Otherconversionswillbetaughtastheybecomenecessary.
a.b. / 4008g
1.2km / =kg
=m / h.
i. / 25.0μm
2.65mm / =m
=m
c. / 823nm / =m / j. / 8.23m / =km
d. / 298K / =oC / k. / 5.4L / =m3
e. / 0.77m / =cm / l. / 40.0cm / =m
f. / 8.8x10-8m / =mm / m. / 6.23x10-7m / =nm
g. 1.2 atm =______Pa
- Geometry Review
g.Howlarge is,δ,γ,β,andα?J.Howlargeisa,b,andc?
h.Theradiusofacircleis5.5cm,
i.Whatisthecircumferenceinmeters? ______m
ii.Whatisitsareainsquaremeters? _____ m2
4
i.Whatistheareaunderthecurveto theright? ______m2
4. Usingthegenerictriangletotheright,RightTriangleTrigonometryandPythagoreanTheoremsolvethefollowing.Yourcalculatormustbeindegreemode.
1220
4.Vectors
Magnitude:Sizeorextent.Thenumericalvalue.
Direction:Alignmentororientationofanypositionwithrespecttoanyotherposition.
Scalars:Aphysicalquantitydescribedbyasinglenumberandunits.Aquantitydescribedbymagnitudeonly.
Examples:time,mass,andtemperature
Vector:Aphysicalquantitywithbothamagnitudeandadirection.Adirectionalquantity.
Examples:velocity,acceleration,force
Notation: AorALengthofthearrowisproportionaltothevectorsmagnitude.
Directionthearrowpointsisthedirectionofthevector.
8.Component Vectors
.
Aresultantvectorisavectorresultingfromthesumoftwoormoreothervectors.Mathematicallytheresultanthasthesamemagnitudeanddirectionasthetotalofthevectorsthatcomposetheresultant.Couldavector bedescribedbytwoormoreothervectors?Wouldtheyhavethesametotalresult?
Thisisthereverseoffindingtheresultant.Youaregiventheresultantandmustfindthecomponentvectorsonthecoordinateaxisthatdescribetheresultant.
R
+Ry
R
+Rxor
R
+Ry
+Rx
Anyvectorcanbedescribedbyanxaxisvectorandayaxisvectorwhichsummedtogethermeantheexactsamething.Theadvantageisyoucanthenuseplusandminussignsfordirectioninsteadoftheangle.
Forthefollowingvectorsdrawthecomponentvectorsalongthexandyaxis.
- c.
- d.
Obviouslythequadrantthatavectorisindeterminesthesignofthexandycomponentvectors.
9.Trigonometryand Vectors
Thesumofvectors xandydescribethevectorexactly.Again,anymathdonewiththecomponentvectorswillbeasvalidas withtheoriginalvector. Theadvantageisthatmathonthexand/oryaxisisgreatlysimplifiedsincedirectioncanbespecifiedwithplusandminussignsinsteadofdegrees.But,howdoyoumathematicallyfindthelengthofthecomponentvectors?Usetrigonometry.
cosadj
hyp
sinopp
hyp
1010
adjhypcosopphypsin
yxhypcosyhypsin
40o
40o
x
x10cos40o
x7.66
y10sin40o
y6.43
Solvethefollowingproblems.Youwillbeconvertingfromapolarvector,wheredirectionisspecifiedindegreesmeasuredcounterclockwisefromeast,tocomponentvectorsalongthexandyaxis.Remembertheplusandminussignsonyouanswers.Theycorrespondwiththequadranttheoriginalvectorisin.
Hint:Drawthevectorfirsttohelpyouseethequadrant.Anticipatethesignonthexandyvectors.Donotbothertochangetheangletolessthan90o.Usingthenumbergivenwillresultinthecorrect+and–signs.
Thefirstnumberwillbethemagnitude(lengthofthevector)andthesecondthedegreesfromeast.
Yourcalculatormustbeindegreemode.
Example:250at235o
235o
250
- 89at150o
- 6.50at345o
b.0.00556at60o
xhypcos
x250cos235o
x143
yhypsin
y250sin235o
y205
- 7.5x104at 180o
e.12at265o
f.990at320o
g.8653at225o
10.Giventwocomponentvectorssolvefortheresultantvector. UsePythagoreanTheoremtofindthehypotenuse,thenuseinverse(arc)tangenttosolvefortheangle.
Example:x=20,y=-15R2 x2 y2
tanopp
adj
opp
Rx2y2
tan1
adj
y
20R
202152
tan1
-15
R25
x
360o36.9o 323.1o
- x=600,y=400
b.x=-0.75,y=-1.25
c.x=-32,y=16
d.x=0.0065,y=-0.0090
- x=20,000,y=14,000
- x=325,y=998
11. Vector Applications
Speed
Speedisascalar.Itonlyhasmagnitude(numericalvalue).
Vs=10m/smeansthatanobjectisgoing10meterseverysecond.But,wedonotknowwhereitisgoing.
Velocity
Velocityisavector.Itiscomposedofbothmagnitudeanddirection.Speedisapart(numericalvalue)ofvelocity.
V=10m/snorth,orv=10m/sinthe+xdirection,etc.Therearethreetypesofspeedandthreetypesofvelocity
Instantaneousspeed/velocity:Thespeedorvelocityatan instant intime.Youlook downat yourspeedometeranditsays20m/s.Youaretravelingat20m/satthatinstant.Yourspeedorvelocitycouldbechanging,butatthatmomentitis20 m/s.
Averagespeed/velocity:Ifyoutakeatripyoumightgoslowpartofthewayandfastatothertimes.Ifyoutakethetotaldistancetraveleddividedbythetimetraveledyougettheaveragespeedoverthewholetrip.Ifyoulookedatyourspeedometerfromtimetotimeyouwouldhaverecordedavarietyof instantaneousspeeds.Youcouldgo0m/sinagasstation,oratalight.Youcouldgo30m/sonthehighway,andonlygo10m/sonsurfacestreets. But,whiletherearemanyinstantaneousspeedsthereisonlyoneaveragespeedforthewholetrip.
Constantspeed/velocity:If youhavecruisecontrolyoumighttravelthewholetimeatoneconstantspeed.Ifthisisthecasethenyouaveragespeedwillequalthisconstantspeed.
Constantvelocitymusthavebothconstantmagnitudeandconstantdirection.
Rate
Speedandvelocityarerates.Arateisawaytoquantifyanythingthattakesplaceduringatimeinterval.Ratesareeasilyrecognized.Theyalwayshavetimeinthedenominator.
10m/s10meters/second
The veryfirst Physics Equation
VelocityandSpeedbothsharethesameequation.Rememberspeedisthenumerical(magnitude)partofvelocity.Velocityonlydiffersfromspeedinthatitspecifiesadirection.
v= x
t
vstandsforvelocityxstandsfordisplacementtstandsfortime
Displacementisavectorfordistancetraveledinastraightline.Itgoeswithvelocity.Distanceisascalarandgoeswithspeed.Displacementismeasuredfromtheorigin.Itisavalueofhowfarawayfromtheoriginyouareattheendoftheproblem.Thedirectionofadisplacementistheshorteststraightlinefromthelocationatthebeginningoftheproblemtothelocationattheendoftheproblem.
SOLVE thefollowingproblems:
Always use thekmssystem:Units must be inkilograms,meters,seconds. On the alltests,including theAP examyou must:
1.List the originalequation used.
2.Show correct substitution.
3.Arrive at the correct answerwith correct units. Distanceanddisplacementaremeasuredin (m)Speedandvelocityaremeasured in (m/s)Time ismeasured in (s)
Example:Acartravels1000metersin10seconds.Whatisits velocity?
vx
t
v1000m
10s
v100ms
a.Acartravels35kmwestand75kmeast.Whatdistancedidittravel?
b.Acartravels35kmwestand75kmeast.Whatisitsdisplacement?
c.Acartravels35kmwest,90kmnorth.Whatdistancedidittravel?
d.Acartravels35kmwest,90kmnorth.Whatisitsdisplacement?
e.Abicyclistpedalsat10m/sin20s.Whatdistancewastraveled?
f.Anairplaneflies250.0kmat300m/s.Howlongdoesthistake?
g.Askydiverfalls3kmin15 s.Howfastaretheygoing?
h.Acartravels35kmwest,90kmnorthintwohours.Whatisitsaveragespeed?
i.Acartravels35kmwest,90kmnorthintwohours.Whatisitsaveragevelocity?
12.