Density Functional Theoretical study on the preferential selectivity of Sr+2 ion over Th+4 ion with macrocyclic dicyclo-hexano-18-crown-6 from aqueous phase to the organic phase of different dielectric constant

A. Boda#, J.M. Joshi, Sk. M. Ali*#, K.T. Shenoy and S.K. Ghosh

Chemical Engineering Division,

Chemical Engineering Group,

Bhabha Atomic Research Centre, Mumbai, 400 085, India.

#Homi Bhabha National Institute, Mumbai, 400 085, India.

Section S1

Table.S1. Calculated structural parameters of metal ion-ligand complexes at BP/SV(P) level oftheory.

Complex / M+-O ( Å ) / N-O1 (Å)
(coordinated) / N-O2 (Å)
(non coordinated)
O of Crown / O of Nitrate ion / O of H3O+
Sr2+-DCH18C6 / 2.622,2.535,2.631,
2.580,2.552,2.591
Th4+-DCH18C6 / 2.396,2.376,2.393,
2.4003,2.389,2.409
Sr(NO3)2-DCH18C6 / 2.774,2.740,2.821,
2.667,2.865,2.779 / 2.576,2.62,
2.619,2.624 / 1.286-1.288 / 1.225-1.226
Th(NO3)4-DCH18C6 / 2.611,2.543,2.843,
2.626,2.569,2.651 / 2.367,2.358,
2.364,2.334 / 1.331-1.343 / 1.226-1.236
Th(NO3)6-(DCH18C6)2(H3O)2 / 6.732,5.754,7.090,
6.145,6.420,6.373,
6.393,8.418,6.087,
5.913,8.013,8.954 / 2.586,2.581,2.577,
2.587,2.584,2.595,
2.597,2.582,2.551,
2.576,2.563,2.565 / 5.399,
6.938 / 1.280-1.287 / 1.223-1.227

Table.S2. NBOPopulation analysis at B3LYP/TZVP level of theory.

Complex / Charge on
M / s / p / d / f / g
Sr2+-DCH18C6 / 1.8591 / 2.089 / 5.997 / 0.0539 / 0.0 / 0.0
Th4+-DCH18C6 / 2.7980 / 4.0682 / 11.9736 / 10.6606 / 0.4967 / 0.0021
Sr(NO3)2-DCH18C6 / 1.7945 / 2.139 / 6.002 / 0.0636 / 0.0 / 0.0
Th(NO3)4-DCH18C6 / 1.7614 / 4.1666 / 11.9663 / 11.0721 / 1.0305 / 0.0029
Th(NO3)6-(DCH18C6)2(H3O)2 / 1.5101 / 4.2384 / 12.0019 / 11.188 / 1.057 / 0.003

Section S2

  1. Binding energy and free energy of complexation in gas phase

Effect of anion

The metal ion when extracted from aqueous phase to the organic phase by neutral ligand, it is accompanied by the co-anion in the organic phase. The metal ion-ligand complexation reaction (1:1) in the presence of nitrate anion can be written as

Sr2+ + 2NO3- + L = Sr(NO3)2L, (S1)

Th4+ + 4NO3- + L = Th(NO3)4L (S2)

The gas phase binding energy for the complexation reaction (Eq.1) can be expressed as

ESr2+= ESr(NO3)2L– (ESr2+ + EL + 2ENO3-) (S3)

Whereas the binding energy for the complexation reaction (Eq.2) can be expressed as

ETh4+(1:1) = ETh(NO3)2L– (ETh4+ + EL + 4ENO3-) (S4)

From X-ray crystallographic analysis39, it was shown that the extracted complex of Th4+ ion in nitrate medium with DCH18C6 is 1:2 stoichimetric. Hence, the complexation reaction of Th4+ ion with DCH18C6 is also modeled as

Th4+ + 2L + 6NO3-+2H3O+→ Th(NO3)6L2(H3O)2 (S5)

The binding energy for the above reaction can be written as

ETh4+(1:2)= ETh(NO3)6L2(H3O)2– (ETh4+ + 2EL + 6ENO3-+2 EH3O+) (S6)

The calculated values of binding energy in the presence of nitrate anion are presented in Table.2. In comparison to absence of nitrate anion, the binding energy is increased for both Sr2+ and Th4+ ion with DCH18C6 in the presence of nitrate anion. The binding energy obtained using BP86 functional is overestimated than predicted by B3LYP functional. The binding energy for Th4+ was found to be higher by 1176.29kcal/mol than Sr2+ ion in presence of nitrate anion with the B3LYP functional. In case of 1:2 complex the binding energy is found to be even more. The binding energy of Th4+ ion for 1:2 complexation reactions is higher by 406.71kcal/mol than that of 1:1 complexation reaction using B3LYP functional.

The calculated values of free energy of complexation in gas phase in the presence of nitrate anion are presented in Table.2. The computed value of free energy obtained at BP86/SV (P) level is found to be overestimated than B3LYP/TZVP level of theory. The free energy of complexation for Th4+ ion using B3LYP functional is found to be higher by 1143.57 kcal/mol than that of Sr2+ ion. In case of 1:2 complexes the free energy is found to be even more. The free energy of Th4+ ion for 1:2 complexation reaction is higher by 340.19kcal/mol than that of 1:1 complexation reaction at the B3LYP level of theory.

Effect of hydrated metal ion

The binding energy or the free energy of complexation in gas phase for bare Sr2+ and Th4+ metal ions either in absence or presence of nitrate anion was unable to capture the experimentally observed selectivity of Sr2+ metal ion over Th4+ metal ion. During the extraction experiment the transfer of metal ion takes place from aqueous solution to the organic phase. So, it will be worthwhile to take into account of the hydrated form of the metal ion. In view of that, the complexation reaction is modeled using the hydrated cluster of metal ion. Both Sr2+and Th4+ metal ions were considered as eight coordinated first solvation shell. The optimized structure of the hydrated cluster of Sr2+and Th4+ metal ions are displayed in Fig.7. The calculated Sr-O bond distance (2.65-2.66Å) and Th-O bond distance (2.48-2.49 Å) are found to be in excellent agreement with the reported experimental results of Sr-O bond distance (2.60Å)49 and Th-O bond distance (2.45-2.49 Å)50 respectively. The gas phase hydration energy for the following hydrated cluster reaction

M + 8H2O = M-(H2O)8, (M= Sr2+ or Th4+) (S7)

can be expressed as

Ehyd = EM-(H2O)8– (EM + 8EH2O) (S8)

The calculated values of hydration energy are presented in Table.5. The value of gas phase hydration energy for Th4+ ion is higher by 518.09kcal/mol than Sr2+ ion, whereas the difference in free energy is 516.52kcal/mol. The amount of energy required to dehydrate the Th4+ ion is much higher than Sr2+ ion, which favors the Sr2+ ion extraction over Th4+ ion. The gas phase complexation reaction with hydrated metal ion in absence of nitrate anion can be written as

M-(H2O)8 + L → M-L + 8H2O (M= Sr2+ or Th4+) ( S9)

The binding energy for the above reaction can be expressed as

E = (EM-L +8EH2O) – (EM-(H2O)8 + EL). (S10)

The computed value of binding energy using both BP/SV (P) and B3LYP/TZVP level of theories with hydrated metal ion was much lower than the bare metal ion as shown in Table.3. The calculated value of binding energy at BP/SV (P) level was found to be underestimated than B3LYP value. The computed value of binding energy for Th4+ ion at B3LYP level is higher by 48.42kcal/mol than Sr2+ ion. It is interesting to note that in case of bare metal ion the binding energy difference between Th4+ and Sr2+ metal ion was very high. The binding energy difference has now been reduced by 91.45%. This is due to the higher desolvation energy required for Th4+ ion during the transfer from aqueous phase to the organic phase.

The free energy of complexation, ∆G was also computed for the hydrated metal ion for reaction (Eq. S9). The calculated value of free energy of complexation in gas phase is presented in Table.3. The free energy of complexation for Th4+ ion using B3LYP functional is found to be higher by 51.64kcal/mol than that of Sr2+ ion. Though the free energy difference between Th4+ and Sr2+ metal ion has been reduced by 90.91% with hydrated metal ion, the free energy of complexation in gas phase is still in favour of Th4+ ion and hence fails to predict the correct experimental selectivity as was the case for binding energy.

The gas phase complexation reaction with hydrated metal ion in presence of nitrate anion can be written as

Sr2+-(H2O)8 + 2NO3- + L → Sr(NO3)2L + 8H2O, (S11)

Th4+ -(H2O)8 + 4NO3- + L → Th(NO3)4L + 8H2O, (S12)

The gas phase binding energy for the above reactions can be expressed as

ESr2+= (ESr(NO3)2L+ 8EH2O) – (ESr2+ -(H2O)8 + EL + 2ENO3-) (S13)

and

ETh4+(1:1) = (ETh(NO3)4L+ 8EH2O) – (ETh4+ -(H2O)8 + EL + 4ENO3-) (S14)

The metal ion-ligand complexation reaction for 1:2 stoichiometric for hydrated Th4+ ion in presence of nitrate anion can be written as

Th4+ -(H2O)8 + 2L + 6NO3-+ 2H3O+→ Th(NO3)6L2(H3O)2 + 8H2O, (S15)

The binding energy for the above reaction can be expressed as

ETh4+(1:2)= (ETh(NO3)6L2(H3O)2+ 8EH2O) – (ETh4+ -(H2O)8+ 2EL + 6ENO3-+ 2EH3O+) (S16)

The calculated values of binding energy in presence of nitrate anion and hydrated metal ion are presented in Table.3. In comparison to absence of nitrate anion, the binding energy is increased for both Sr2+ and Th4+ ion with DCH18C6 in the presence of nitrate anion and hydrated metal ion. The binding energy obtained using BP86 functional is overestimated than predicted by B3LYP functional. The binding energy for Th4+ and Sr2+ ion was found to be reduced in presence of hydrated metal ion. The reduction in binding energy in case of Th4+ ion was 46.46%, whereas, it is 52.24% for Sr2+ ion. The binding energy for Th4+ was found to be higher by 658.21kcal/mol than Sr2+ ion in presence of hydrated metal ion with B3LYP functional, which is a reduction of 44.04%. In case of 1:2 complex the binding energy is found to be more than 1:1 complex but is reduced compared to bare metal ion. The binding energy of Th4+ ion for 1:2 complexation reactions is higher by 406.71kcal/mol than that of 1:1 complexation reaction at B3LYP level as was in the case with bare metal ion.

Section- S3

The calculated values of free energy of complexation in gas phase in the presence of nitrate anion with hydrated metal ion are presented in Table.3. The computed value of free energy obtained at BP86/SV (P) level is found to be overestimated than the value computed at B3LYP/TZVP level of theory but in both cases the free energy of complexation is reduced compared to bare metal ion. The reduction in free energy in case of Th4+ ion was 45.70%, whereas, it is 40.93% for Sr2+ ion. The free energy for Th4+ was found to be higher by 627.17kcal/mol than Sr2+ ion in presence of hydrated metal ion with B3LYP functional, which is a reduction of 45.15%. In case of 1:2 complex the free energy is found to be more than 1:1 complex but is reduced compared to bare metal ion. The binding energy of Th4+ ion for 1:2 complexation reactions is higher by 340.18kcal/mol than that of 1:1 complexation reaction using B3LYP functional as was in the case with bare metal ion. After consideration of hydrated metal ion, it is seen that the difference in binding energy and free energy of complexation is reduced by 40-52% compared to bare metal ion in gas phase. Still DCH18C6 is showing the preference for Th4+ ion over Sr2+ ion. The gas phase binding energy and free energy was inadequate to capture the experimental selectivity of Sr2+ ion over Th4+ ion towards DCH18C6. This is due to the lack of consideration of solvent effect in aqueous and organic phase. The metal ions are extracted from the aqueous environment, where it remains in strongly hydrated form. During transfer from aqueous phase to organic phase the metal ion has to be dehydrated. Hence it is essential to compute the solvation energy of the metal ions in aqueous environment for accurate prediction of extraction energy.

The free energy of hydration for Sr and Th metal ion can be calculated using the following hydration reaction

Mm+(gas) + nH2O(aq) Mm+(H2O)n(aq) (M,n = Sr,2; Th,4)

Here, monomer H2O unit was considered. The calculated value of hydration free energy is presented in the Table. S3.

Alternatively, the free energy of hydration for Sr and Th metal ion can be calculated using the following cluster hydration reaction

Mm+ (gas) + H2On(aq) Mm+(H2O)n(aq) (M,m = Sr,2; Th,4)

Here, cluster of H2O unit was considered. The calculated value of hydration free energy is presented in the Table. S3. The free energy of hydration obtained using cluster model gives close value with the experimentally observed results compared to monomer unit approach.

Table.S3. Calculated values of free energy of hydrationat B3LYP/TZVP level of theory

System / ∆Egas kcal/mol / ∆Hgas
kcal/mol / ∆Ggas kcal/mol / ∆Ehyd kcal/mol / ∆Hhyd
kcal/mol / ∆Ghyd kcal/mol / ∆Ghyd kcal/mol
(Experiment)
Sr / -292.70 / -292.70
Th / -1170.79 / -1170.79
Sr-8w / -256.91 / -243.53 / -166.14 / -359.41 / -346.02 / -268.63 / -330.14
Th-8w / -775.00 / -762.77 / -682.66 / -1374.67 / -1362.44 / -1282.33 / -1391.14
Th-9w / -808.96 / -794.57 / -703.54 / -1381.52 / -1367.13 / -1276.10
Th-10w / -833.42 / -817.04 / -716.16 / -1386.28 / -1369.90 / -1269.02
Cluster
Sr-8w / -176.99 / -176.21 / -175.91 / -326.33 / -325.55 / -325.25
Th-8w / -695.08 / -695.46 / -692.44 / -1341.59 / -1341.97 / -1338.95
Th-9w / -753.61 / -754.93 / -747.65 / -1371.47 / -1372.79 / -1365.51
Th-10w / -766.30 / -765.97 / -762.47 / -1376.03 / -1375.71 / -1372.21

a reference [54]

Table.S4. Extraction energies, ∆Eext(kcal/mol) using implicit COSMO model at B3LYP/TZVP level of theory in different organic solvents

Complex / Toluene / Xylene / Octanol / NB
Sr2+-DCH18C6 / 19.45 / 15.32 / -29.53 / -41.91
Th4+-DCH18C6 / 133.04 / 115.39 / -78.30 / -132.50
Sr(NO3)2-DCH18C6 / -69.78 / -70.28 / -76.06 / -77.80
Th(NO3)4-DCH18C6 / -233.75 / -234.38 / -241.70 / -243.90
Th(NO3)6-(DCH18C6)2(H3O)2 / -329.14 / -329.74 / -336.72 / -338.81

Table.S5. ∆G (kcal/mol) using implicit COSMO model at B3LYP/TZVP level of theory in different organic solvents

Complex / Toluene / Xylene / Octanol / NB
Sr2+-DCH18C6 / 31.38 / 27.25 / -17.60 / -29.98
Th4+-DCH18C6 / 143.31 / 125.65 / -68.03 / -122.23
Sr(NO3)2-DCH18C6 / -34.49 / -34.99 / -40.78 / -42.52
Th(NO3)4-DCH18C6 / -165.87 / -166.50 / -173.82 / -176.01
Th(NO3)6-(DCH18C6)2(H3O)2 / -194.74 / -195.34 / -202.32 / -204.40

Section-S4

Table.S6. ∆∆Eext and ∆∆Gext in kcal/mol at B3LYP/TZVP level of theory in gas phase for different complexation reactions

Reaction / ∆∆Eext / ∆∆Gext
Eq.S17 / 566.50 / 568.17
Eq.S18 / 1176.29 / 1143.69
Eq. S19 / 1091.29 / 1027.45
Eq.S20 / 48.42 / 51.64
Eq.S21 / 658.21 / 627.17
Eq.S22 / 830.11 / 677.07

The preferential extraction and hence selectivity of the metal ions can also be predicted by calculating the differences in extraction energy between two metal ions, ∆∆Eext(∆∆Eext = ∆Eext(Sr2+) -∆Eext(Th4+)) using the followingion exchange reaction in gas phase

(Th4+-L) (gas)+ Sr2+(gas) → (Sr2+-L) (gas) + Th4+(gas) (S17)

The calculated value of ∆∆Eext for the above ion exchange reaction in gas phase is given in the supplementary table, Table.S6. The value of ∆∆Eext was found to be positive indicating the preference for Th4+ ion over Sr2+ ion byDCH18C6.

The ∆∆Eext is also computed in presence of nitrate anion as per the following 1:1 exchange reaction.

(Th-L-(NO3)4) (gas)+ Sr2+(gas) → (Sr-L-(NO3)2) (gas)+ Th4+(gas)+ 2NO3-(gas) (S18)

Here, due to the presence of nitrate anion, the value of ∆∆Eext is increased compared to the absence of nitrate anion (Table.S6). The ∆∆Eext for 1:2 complexation reactions using the following exchange reaction

Th-(L)2-(NO3)6-(H3O)2 (gas)+ 2Sr2+(gas) →2 (Sr-L-(NO3)2) (gas)+ Th4+(gas)+ 2NO3-(gas)+2H3O+ (gas) (S19)

is presented in Table.S6. The value of ∆∆Eext is reduced compared to 1:1 complexation reaction. The value of ∆∆Eext is calculated using explicit hydrated metal ion in absence of nitrate anion as per the following exchange reaction:

(Th4+-L) (gas)+ Sr2+-8H2O (gas) → (Sr2+-L) (gas) + Th4+-8H2O (gas) (S20)

The calculated value of ∆∆Eext is presented in Table.S6, which is found to be less positive compared to the bare metal ion. Similarly, the value of ∆∆Eext was calculated using hydrated metal ion in the presence of nitrate anion as per the following 1:1 exchange reaction:

(Th-L-(NO3)4) (gas)+ Sr2+-8H2O (gas) → (Sr-L-(NO3)2) (gas)+ Th4+-8H2O (gas)+ 2NO3-(gas) (S21)

The calculated value of ∆∆Eext (see Table.S6) is found to be more positive than that of in the absence of nitrate anion. Now, the value of ∆∆Eext is calculated for the following 1:2 exchange reaction:

Th-L2-(NO3)6-(H3O)2(gas) + 2Sr2+-8H2O(gas)→2(Sr-L-(NO3)2)(gas) + Th4+-8H2O(gas) + 2NO3-(gas)+2H3O+(gas) +8H2O (S22)

The calculated value of ∆∆Eext is presented in Table.S6. The value of ∆∆Eext is found to be more positive than 1:1 complexation reaction but less positive than 1:2 complexation reaction when the metal ion was not hydrated i.e bare metal ion. Hence, from the above analysis, it is concluded that the gas phase extraction energy for ion exchange reaction cannot be used to predict the correct experimental selectivity trend.From the analysis of ∆∆Eext, no consistent and correct selectivity data was obtained to explain the experimental selectivity trend. In view of the contrasting results, the thermodynamical analysis was performed to arrive at a consistent and correct selectivity trend for the above ion exchange reaction in gas phase and the calculated values of free energy of transfer is presented in Table.S6. The calculated value of ∆∆Gext (∆∆Gext = ∆Gext(Sr2+) -∆Gext(Th4+) ) for the ion exchange reaction of all possible type are presented in Table.7. The value was positive, indicating the preferential extraction of Th4+ ion over Sr2+ ion. So gas phase free energy of extraction is not sufficient to predict the correct experimental selectivity data.

The preferential extraction and hence selectivity of the metal ions can also be predicted by calculating the differences in extraction energy between two metal ions, ∆∆Eext(∆∆Eext = ∆Eext(Sr2+) -∆Eext(Th4+)) using the followingion exchange reaction in solvent phase for the solvated bare metal ion as

(Th4+-L)org + Sr2+(aq) → (Sr2+-L)org + Th4+(aq) (S23)

The computed values of ∆∆Eext for the above ion exchange reaction are presented in Table.S7. The value of ∆∆Eext is found to be more negative with decreasing dielectric constant. It is found to be highest in toluene and lowest in nitrobenzene. The value of ∆∆Eext is predicted to be positive both in octanol and nitrobenzene. Thusion exchange reaction employing implicit solvation of metal ion fails to predict the consistent results with experimental data. Next, along with the solvated bare metal ion, the nitrate anion was included in the 1:1 ion exchange reaction as

Th-L-(NO3)4(org) + Sr2+(aq) →Sr-L-(NO3)2(org)+ Th4+(aq)+ 2NO3-(aq) (S24)

The calculated value of ∆∆Eext is presented in Table.S7. The value of ∆∆Eext is found to be positive in all the organic solvents indicating the preference of Th4+ ion over Sr2+ ion. ∆∆Eext is found to be more positive due to the presence of nitrate anion. For 1:2 complexation reactions, the ion exchange reaction can be written as

Th-(L)2-(NO3)6-(H3O)2org+ 2Sr2+(aq) →2(Sr-L-(NO3)2)org+ Th4+(aq)+ 2NO3-(aq)+2(H3O)+(aq) (S25)

The calculated value of ∆∆Eext is found to be more positive than that of 1:1 complexation reaction.

Table.S7. ∆∆Eext and ∆∆Gext in kcal/mol at B3LYP/TZVP level of theory in different organic solvents using different stoichiometric complexation reactions.

Reaction / ∆∆Eext / ∆∆Gext
toluene / xylene / octanol / nitrobenzene / toluene / xylene / octanol / nitrobenzene
Eq.S23 / -113.58 / -100.06 / 48.77 / 90.59 / -111.92 / -98.40 / 50.43 / 92.25
Eq.S24 / 163.97 / 164.11 / 165.64 / 166.09 / 131.37 / 131.51 / 133.04 / 133.50
Eq. S25 / 189.59 / 189.19 / 184.59 / 183.20 / 125.75 / 125.36 / 120.76 / 119.37

Section-S5

Free energy of extraction using cluster approach and thermodynamic cycle.

∆G1 = [∆Gg1 +∆Gs(Sr-L-(NO3 )2)]-[∆Gs(Sr2+)+2∆Gs(NO3-)+∆Gs(L)]

In the calculation of metal ion solvation the cluster of water has been considered using the methodology adapted by Dolg etal.53, NO3- and H3O+ solvation has been performed using the methodology performed by Boda et. al48.

∆G2 = [∆Gg2 +∆Gs(Th-(L)2-(H3O+)2-(NO3)6)]-[∆Gs(Th4+)+6∆Gs(NO3-)+2∆Gs(L)]+∆Gs(H3O+)]

Table. S8.Free energy of solvation of ligand and metal-ligand complex in different organic solvent.

toluene / xylene / octanol / nitrobenzene
∆Gs(L) kcal/mol / -3.97 / -4.26 / -7.77 / -8.86
∆Gs(Sr-L-(NO3 )2) kcal/mol / -10.74 / -11.53 / -20.83 / -23.65
∆Gs(Th-(L)2-(H3O+)2-(NO3)6) kcal/mol / -16.20 / -17.39 / -31.38 / -35.64
First Solvation shell of Th4+ and Sr2+ / ∆Gs(Th4+) kcal/mol / ∆Gs(Sr2+) kcal/mol
8H2O / -1341.97 / -325.25
9H2O / -1372.79 / ------
10H2O / -1375.71 / ------

Table. S9. Free energy of hydration of metal ion

Table. S10. Free energy of metal ion-ligand complexation in gas phase and free energy of solvation of nitrate and hydronium ions.

∆Gg1 / -456.43 kcal/mol
∆Gg2 / -1940.30 kcal/mol
∆Gs(NO3-) / -52.12 kcal/mol
∆Gs(H3O+) / -94.81 kcal/mol

Table.S11. Free energy of complexation in different organic solvents.

First Solvation shell of Th4+ / toluene / xylene / octanol / nitrobenzene
∆G1 kcal/mol / ∆G2 kcal/mol / ∆G1 kcal/mol / ∆G2 kcal/mol / ∆G1 kcal/mol / ∆G2 kcal/mol / ∆G1 kcal/mol / ∆G2 kcal/mol
8H2O / -33.70 / -104.24 / -34.20 / -104.84 / -39.99 / -111.82 / -41.73 / -113.91
9H2O / -- / -73.42 / -- / -74.02 / -- / -81.00 / -- / -83.09
10H2O / -- / -70.51 / -- / -71.11 / -- / -78.08 / -- / -80.17

Table. S12.∆∆G of complexation between Sr2+ and Th4+ ions in different organic solvents.

∆∆G kcal/mol [∆∆G = 2∆G1 -∆G2]
First Solvation shell of Th4+ / toluene / xylene / octanol / nitrobenzene
8H2O / 36.84 / 36.44 / 31.84 / 30.45
9H2O / 6.02 / 5.62 / 1.02 / -0.37
10H2O / 3.11 / 2.71 / -1.90 / -3.29

The calculated value of ∆∆G is found to increases with increasing dielectric constant as observed in the solvent extraction experiment but it fails to predict negative free energy, ∆∆G for low dielectric constant solvent like Toluene and Xylene which contradicts the experimental selectivity for Sr2+ ion over Th4+ ion. Whereas, in the main manuscript, it has been observed that the monomer water approach leads to a consistent results as per experimental findings.

Sr2+-(H2O)8 (side view) Sr2+-(H2O)8 (top view)

Th4+-(H2O)8 (side view) Th4+-(H2O)8 (top view)

Th4+-(H2O)9 Th4+-(H2O)10

Fig. S1. Optimized structure of hydrated metal ion cluster of Sr2+-(H2O)8, Th4+-(H2O)8,Th4+-(H2O)9and Th4+-(H2O)10 at BP/SV(P) level of theory.

Fig.S2. Calculated values of ∆Gext for Sr2+ and Th4+ ions in different organic solvent for 1:1 complexation reaction at B3LYP/TZVP level of theory

Fig.S3. Calculated values of ∆∆Gext for selectivity of Sr2+ ion over Th4+ ions in different organic solvent for 1:2 complexation reaction at B3LYP/TZVP level of theory

Optimized coordinates

**********************************

DCH18CROWN6

**********************************

C -4.9402313 0.9377770 1.0879682

C -3.6119153 1.2992544 0.3935804

C -3.4365898 0.5023781 -0.9128580

C -3.5222178 -1.0118714 -0.6391389

C -4.8728811 -1.3644048 0.0189461

C -5.0707391 -0.5768752 1.3258617

O -2.4284523 -1.3604799 0.2024872

C -1.9464391 -2.6802675 0.0798818

C -0.5380448 -2.7523376 0.6840004

O 0.3667593 -1.7895097 0.1981877

C 0.5996621 -1.8241568 -1.1979103

C 1.5735122 -0.7228806 -1.5682478

O 2.8622491 -1.0210972 -1.0422135

C 3.7986168 0.0532283 -1.0897813

C 3.5906165 1.0536681 0.0737902

C 3.5573328 0.3038759 1.4201286

C 4.5290723 -0.9018412 1.4531155

C 5.7092228 -0.6997831 0.4866228

C 5.2190883 -0.5547812 -0.9766156

O 2.3878037 1.8187934 -0.0022741

C 2.3973057 2.8982349 -0.9102845

C 1.0018803 3.5012337 -0.9593489

O 0.1279607 2.6221954 -1.6381976

C -1.2243459 3.0225607 -1.5810704

C -2.1054533 1.9852708 -2.2795749

O -2.2125547 0.7491786 -1.5966641

H 1.1798762 0.2410885 -1.1802990

H 1.6219359 -0.6547100 -2.6876458

H -0.3392657 -1.6296591 -1.7712317

H 1.0045945 -2.8240170 -1.5082437

H -0.1555979 -3.7985857 0.5298964

H -0.5998257 -2.5711407 1.7791263

H -1.9303874 -2.9858373 -0.9976994

H -2.5928799 -3.4267018 0.6137868

H -4.9180740 -2.4611717 0.2066694

H -5.6959867 -1.1348618 -0.6979974

H -4.2973668 -0.9012959 2.0578398

H -6.0616929 -0.8158647 1.7735975

H -5.0242287 1.4897773 2.0509297

H -5.7925644 1.2840816 0.4544761

H -2.7464767 1.0657193 1.0515176

H -3.5858081 2.3914122 0.1802378

H -1.6545641 1.7765783 -3.2782320

H -3.1141934 2.4371463 -2.4528484

H -1.5499174 3.1586042 -0.5187920

H -1.3641438 4.0109230 -2.1000552

H 1.0467368 4.4962977 -1.4775306

H 0.6511583 3.6808287 0.0890514

H 3.1261461 3.6874849 -0.5850333

H 2.6862624 2.5802311 -1.9436337

H 3.7848973 1.0312541 2.2307141

H 2.5135826 -0.0432020 1.5732940

H 4.9001713 -1.0704789 2.4883696

H 3.9768557 -1.8166797 1.1491590

H 6.2798590 0.2093196 0.7908202

H 6.4256750 -1.5478844 0.5623571

H 5.9369550 0.0621712 -1.5619701

H 5.1681837 -1.5476778 -1.4735646

H 4.4634831 1.7597554 0.0507643

H 3.7013222 0.5795428 -2.0733435

H -3.4174172 -1.5427734 -1.6182728

H -4.2918826 0.7511702 -1.5961833

********************************

Sr2+-DCH18C6

*********************************

C -3.9232543 1.1115868 1.9086452

C -2.9492419 1.5271412 0.7877281

C -3.3674894 0.9285479 -0.5668183

C -3.5700541 -0.5941446 -0.5207888

C -4.4893379 -1.0075465 0.6388982

C -4.0566634 -0.4166615 1.9913557

O -2.2398665 -1.2093833 -0.4346235

C -2.2318548 -2.5490668 -0.9659842

C -0.8478033 -3.1446096 -0.8402561

O 0.0957090 -2.2865911 -1.5156764

C 1.3952652 -2.8919155 -1.6797991

C 2.3616017 -1.8195243 -2.1500884

O 2.2509053 -0.6974262 -1.2484194

C 3.4884549 -0.0839617 -0.7713490

C 3.0465673 1.0236481 0.2199274

C 2.7693760 0.4590846 1.6136242

C 4.0887156 -0.0755698 2.2411247

C 5.1168444 -0.5028568 1.1656605

C 4.4229566 -1.1048140 -0.0710146

O 1.8729250 1.7261634 -0.2672259

C 2.1450449 2.7792930 -1.2145990

C 0.8842896 3.5975067 -1.3925525

O -0.1748678 2.7221734 -1.8259942

C -1.4417580 3.3997889 -1.9544562

C -2.4745099 2.3772566 -2.4062850

O -2.3862876 1.1774815 -1.6121222

H 2.1241557 -1.4797940 -3.1861065

H 3.3909141 -2.2340569 -2.1580258

H 1.3386904 -3.7202327 -2.4237028

H 1.7282009 -3.3117038 -0.7021523

H -0.8510400 -4.1535863 -1.3118503

H -0.5451949 -3.2603616 0.2285486

H -2.5476253 -2.5215291 -2.0360640

H -2.9459768 -3.1968687 -0.4095351

H -4.5635074 -2.1161103 0.6861365

H -5.5159183 -0.6566172 0.3841171

H -3.0867613 -0.8644790 2.3106104

H -4.7969761 -0.6951796 2.7713244

H -3.5775754 1.5346971 2.8759483

H -4.9208339 1.5684379 1.7105466

H -1.9220939 1.1711218 1.0606410

H -2.8921896 2.6349802 0.7099748

H -2.2858486 2.0702289 -3.4584230

H -3.4964625 2.8126635 -2.3564928

H -1.7122003 3.8552431 -0.9729977

H -1.3662727 4.2184541 -2.7078923

H 1.0615505 4.3938375 -2.1515201

H 0.5926074 4.0823683 -0.4308113

H 2.9533654 3.4409752 -0.8280265

H 2.4826331 2.3521415 -2.1896004

H 2.3179584 1.2501803 2.2492220

H 2.0160907 -0.3626258 1.5345615

H 4.5368497 0.7026460 2.8954327

H 3.8501192 -0.9323845 2.9065069

H 5.7455371 0.3616575 0.8550197

H 5.8264727 -1.2456464 1.5868316

H 5.1791171 -1.4976770 -0.7836574

H 3.8033473 -1.9693707 0.2611905

H 3.8713723 1.7667087 0.2953727

H 3.9947184 0.3748988 -1.6514763

H -4.0066949 -0.9136362 -1.4947405

H -4.3363332 1.3771581 -0.8818386

Sr -0.1135315 0.2333650 -1.0031818

**********************************

Th4+-DCH18C6

**********************************

C -5.5611024 0.4186096 -0.5299123

C -4.2808435 1.1664786 -0.0725604

C -3.2074561 1.0076672 -1.1414698

C -2.8708753 -0.4361047 -1.5043744

C -4.1238852 -1.2728297 -1.7669505

C -5.2792110 -1.0702321 -0.7662975

O -1.9675934 -0.9223091 -0.3337200

C -2.1643263 -2.2759792 0.2321242

C -1.4123457 -2.2778961 1.5485677

O -0.0636545 -1.6959151 1.2985872

C 1.1160983 -2.6049879 1.1843763

C 1.6506521 -2.4783895 -0.2273445

O 1.7856312 -1.0231050 -0.5033343

C 2.9876303 -0.5119481 -1.3672764

C 3.3525017 0.8743101 -0.7952554

C 4.4586415 0.8281114 0.2452012

C 5.7664712 0.3681698 -0.4800152

C 5.4848179 -0.6278638 -1.6343063

C 4.1977186 -1.4466266 -1.3536638

O 2.0592902 1.5182553 -0.2917191

C 2.1685124 2.9958631 -0.1230235

C 1.2902157 3.3708309 1.0498170

O -0.0212565 2.6986415 0.8294409

C -1.2536208 3.5245269 0.6658598

C -1.8586276 3.1265926 -0.6651627

O -1.8716415 1.6376956 -0.7105503

H 0.9817357 -2.9164650 -0.9990047

H 2.6419803 -2.9685112 -0.3072383

H 0.7990852 -3.6455218 1.4089604

H 1.8400189 -2.2785380 1.9595395

H -1.3039282 -3.2979528 1.9745359

H -1.8862766 -1.6347753 2.3209070

H -1.7886646 -3.0276998 -0.4947324

H -3.2461151 -2.4489462 0.4105211

H -3.8514942 -2.3406469 -1.9213285

H -4.4553007 -0.9398896 -2.7810212

H -5.0801657 -1.5778803 0.2074376

H -6.1826107 -1.5730439 -1.1742517

H -6.3440483 0.5563892 0.2459891

H -5.9632255 0.8917421 -1.4542786

H -3.9262091 0.7469639 0.8987485

H -4.5200503 2.2395866 0.0918698

H -1.2753482 3.4816877 -1.5413331

H -2.8982135 3.5060146 -0.7545969

H -1.9094567 3.3046201 1.5336751

H -0.9819369 4.6010840 0.6847824

H 1.1409722 4.4692789 1.1155926

H 1.6795788 3.0100510 2.0253514

H 3.2259645 3.2601422 0.0872771

H 1.8608102 3.4696893 -1.0799471

H 4.6327396 1.8206176 0.7131289

H 4.1828825 0.1283048 1.0664542

H 6.3147578 1.2523478 -0.8680486

H 6.4285884 -0.0898561 0.2850295

H 5.4020389 -0.1123269 -2.6171600

H 6.3271990 -1.3416784 -1.7502019

H 4.0715317 -2.2635100 -2.0951785

H 4.3198795 -1.8988172 -0.3426035

H 3.6542044 1.5165237 -1.6521724

H 2.5444752 -0.4297075 -2.3821429

H -2.1879795 -0.4927072 -2.3818877

H -3.4825209 1.5400720 -2.0792885

Th -0.0142051 0.3928351 0.1315746

**********************************

Sr(NO3)2-DCH18C6

*********************************

C 4.9823376 1.1344947 0.1333695

C 3.6127610 0.5121365 0.5114621

C 3.5387748 -0.9158002 -0.0471118

C 3.6215429 -0.9640551 -1.5886231

C 4.4260826 0.2123866 -2.1787880

C 5.5478551 0.6441332 -1.2225383

O 2.4767546 1.2332499 -0.0179870

C 2.2941144 2.5303461 0.5500436

C 1.0492027 3.1713084 -0.0269403

O -0.1076323 2.5092664 0.4845051

C -1.3306168 3.1118507 0.0642878

C -2.4976065 2.3599290 0.6703915

O -2.5637133 1.0622471 0.0819579

C -3.6908567 0.2641485 0.4821807

C -3.4861024 -1.1230941 -0.1594594

C -3.5054835 -1.0457651 -1.6899419

C -4.8175296 -0.4177721 -2.1920138

C -5.0874791 0.9471461 -1.5378175

C -5.0324047 0.8492739 -0.0045898

O -2.2549212 -1.7329213 0.2575686

C -2.3254995 -2.5173143 1.4503208

C -1.1077062 -3.4186172 1.4932536

O 0.0569027 -2.6038115 1.5376211

C 1.2757721 -3.3383930 1.5721283

C 2.4276367 -2.3535235 1.5668534

O 2.3447790 -1.6019348 0.3570988

H 2.2055045 2.4510302 1.6581822

H 3.1566852 3.1932537 0.3101849

H 1.0304302 4.2453736 0.2760650

H 1.0627073 3.1146774 -1.1398790

H -1.3663349 4.1725073 0.4109371

H -1.4026008 3.0983823 -1.0475472

H -2.3750985 2.2719719 1.7742450

H -3.4224710 2.9425041 0.4582949

H -5.2233759 1.8342723 0.4703032

H -5.8420746 0.1823882 0.3660905

H -4.3248987 1.6770561 -1.8845399

H -6.0737066 1.3429782 -1.8583818

H -4.7859710 -0.3191003 -3.2966898

H -5.6651685 -1.1043885 -1.9658025

H -2.6361431 -0.4432003 -2.0240357

H -3.3664572 -2.0657638 -2.1019273

H -2.3459077 -1.8637492 2.3511091

H -3.2406393 -3.1536070 1.4370644

H -1.0833678 -4.0767575 0.5918425

H -1.1660083 -4.0687455 2.3993590

H 1.3267844 -3.9650729 2.4947754

H 1.3482234 -4.0132429 0.6850712

H 3.3855945 -2.9226572 1.6042992

H 2.3636460 -1.6846853 2.4545749

H 4.0776720 -1.9346954 -1.8759842

H 2.5899850 -0.9849690 -1.9926880

H 4.8409969 -0.0708460 -3.1673047

H 3.7476414 1.0717108 -2.3572602

H 6.2322734 -0.2170820 -1.0553045

H 6.1723828 1.4392404 -1.6797314

H 5.6990827 0.9150079 0.9521280

H 4.8783914 2.2384166 0.1289737

H 4.4119160 -1.4541417 0.3911040

H 3.5028820 0.4860863 1.6199071

H -3.6876221 0.1726800 1.5939419

H -4.3300824 -1.7679308 0.1843106

Sr -0.0203525 -0.1465646 0.2509644

N -0.0268807 0.2902711 3.2785821

O -1.1210642 0.1792168 2.6111124

O 1.0639554 0.2948355 2.5938671

O -0.0216579 0.3841403 4.5011031

N 0.1513410 -0.0614016 -2.7715012

O -0.1850905 0.9891956 -2.1050430

O 0.1999996 -1.1638646 -2.1055436

O 0.4179152 -0.0136456 -3.9664609

*********************************

Th(NO3)4-DCH18C6

*********************************

C 0.9023306 -2.7773330 -1.0278607

C 1.8940737 -2.5352363 -2.1565133

O 2.1543971 -1.1193747 -2.2155084

C 3.1730093 -0.6379445 -3.1528260

C 3.5728749 0.7899836 -2.6877552

C 4.7705265 0.7551076 -1.7301924

C 6.0263744 0.2811816 -2.5056610

C 5.6677835 -0.7562219 -3.6017972

C 4.4141315 -1.5517332 -3.1993848

O 2.4032525 1.4360689 -2.1247431

C 2.5174314 2.8621990 -1.9801137

C 1.2356053 3.3957084 -1.3616701

O 0.1467726 2.9063311 -2.1722983

C -1.1003049 3.6270386 -2.1481912

C -1.9463086 3.0666425 -3.2834120

O -2.1063948 1.6426301 -3.1084758

C -3.4364234 1.1063146 -3.3030508

C -4.3893926 1.4990318 -2.1622188

C -5.7793191 0.8676212 -2.3610675

C -5.6796542 -0.6604526 -2.4903257

C -4.6989398 -1.0514676 -3.6086818

C -3.3050213 -0.4189363 -3.4521663

O -2.5888243 -0.8559543 -2.2672210

C -2.5587929 -2.2559438 -1.9939951

C -1.5713274 -2.4759848 -0.8564259

O -0.2871448 -2.0210321 -1.3086455

H 1.4963238 -2.8767971 -3.1369133

H 2.8271708 -3.0861019 -1.9099100

H 0.6535078 -3.8627105 -0.9942767

H 1.3326562 -2.4397547 -0.0595209

H -1.5192789 -3.5605929 -0.6115947

H -1.8625154 -1.9002348 0.0508084

H -2.2340601 -2.8215766 -2.8982263

H -3.5628911 -2.6177782 -1.6697430

H -4.6047000 -2.1553401 -3.7037012

H -5.0942143 -0.7063482 -4.5918496

H -5.3383468 -1.0873314 -1.5190642

H -6.6803490 -1.1019191 -2.6959569

H -6.4415487 1.1461929 -1.5117540

H -6.2545858 1.2854314 -3.2806143

H -3.9373900 1.1577378 -1.2067100

H -4.4835928 2.6063240 -2.1057282

H -1.4399363 3.2312458 -4.2600956

H -2.9371864 3.5693721 -3.2760274

H -1.5752454 3.4991895 -1.1507657

H -0.8988397 4.7063207 -2.3441090

H 1.2515756 4.5089125 -1.3954399

H 1.1120467 3.0517215 -0.3124446

H 3.3590245 3.1132981 -1.2982036

H 2.6975998 3.3101540 -2.9843188

H 4.9565197 1.7549492 -1.2859143

H 4.5397241 0.0782362 -0.8792856

H 6.5433069 1.1503718 -2.9696129

H 6.7472804 -0.1590729 -1.7816973

H 5.4849304 -0.2521276 -4.5780591

H 6.5156669 -1.4538212 -3.7731650

H 4.2344428 -2.3965793 -3.8977499

H 4.5895470 -1.9826819 -2.1877309

H 3.8361878 1.3565095 -3.6087456

H 2.6926818 -0.5842608 -4.1530334

H -2.6754238 -0.6611530 -4.3397513

H -3.8167616 1.4931102 -4.2784396

Th -0.0100590 0.3417498 -2.2064515

O -1.4969331 0.9348388 -0.5069735

O 0.5785089 1.1622752 -4.3376749

O -0.3391932 -1.2803164 -3.8989851

O 0.9820368 0.3188302 -0.0599855

N -0.0904265 -1.4173235 -5.2104530

N 1.0803156 2.1599191 -5.0625594

N 2.1643619 0.3246944 0.5521959

N -1.4468192 1.2421489 0.8001514

O 1.0390997 -1.7900749 -5.5340895

O -1.0199204 -1.2002994 -5.9851629

O 0.2896817 2.9535489 -5.5745980

O 2.3088027 2.2153734 -5.1891116

O -1.6821690 0.3401110 1.5976201

O -1.2034058 2.4161747 1.0880785

O 2.6584211 1.4190501 0.8307357

O 2.6818507 -0.7666224 0.8138827

**********************************

Th(NO3)6-(DCH18C6)2(H3O)2

**********************************

C 5.0575739 -1.9721159 10.1405925

C 3.8529712 -1.2169074 10.7666637

C 4.3761135 -0.1092387 11.6847416

C 5.1392425 -0.6812725 12.9005833

C 5.9143007 -1.9765504 12.5454556

C 6.3062782 -2.0067959 11.0574211

O 3.0285222 -2.0636559 11.5746370

C 2.0779645 -2.8368867 10.8573021

C 1.0923316 -3.4332823 11.8455947

O 0.5313086 -2.3825190 12.6606521

C -0.6722500 -2.7243362 13.3655175

C -1.9199157 -2.3634357 12.5721535

O -2.0100277 -0.9467952 12.5201864

C -2.6064960 -0.4182249 11.3219909

C -2.5668515 1.1098518 11.4349262

C -3.4759017 1.6321594 12.5570854

C -4.9281777 1.1594420 12.3597067

C -4.9992045 -0.3709929 12.2281399

C -4.0662836 -0.8681735 11.1122131

O -1.1998324 1.5558367 11.6612910

C -0.8879125 2.8493341 11.1178201

C 0.2142941 3.4718908 11.9564408

O 1.3781495 2.6934716 11.7710224

C 2.4474850 2.9385752 12.6519943

C 3.6340974 2.1354269 12.1472644

O 3.2942837 0.7493571 12.1225885

C 0.9466944 -3.1031617 1.9952653

C 2.3599222 -2.6270804 1.7505882

O 2.3814065 -1.2117911 1.4709141

C 3.7166407 -0.6551478 1.6034317

C 3.7291333 0.7454112 0.9733892

C 3.0162511 1.7720601 1.8641062

C 3.7232457 1.9131770 3.2442331

C 4.7192932 0.7647982 3.5171233

C 4.1475799 -0.6012702 3.0978419

O 3.1527101 0.6207010 -0.3305708

C 3.4614149 1.6537041 -1.2406644

C 2.4386144 1.6025775 -2.3625231

O 1.1493029 1.8192049 -1.7889547

C 0.1186942 2.0706007 -2.7430657

C -1.1766002 2.3010638 -1.9861328

O -1.4902494 1.0960083 -1.3235194

C -2.5786494 1.1415242 -0.3924494

C -2.2294759 1.8278989 0.9364826

C -3.4147491 1.7562868 1.9176290

C -3.8591847 0.3027517 2.1366056

C -4.1918520 -0.3934323 0.8075365

C -3.0329954 -0.3122765 -0.2018324

O -1.8884523 -1.0909707 0.2380850

C -2.0056273 -2.4987921 -0.0390785

C -1.1848867 -3.2812513 0.9658629

O 0.1772359 -2.9200258 0.8157229

H 2.8280880 -3.1726133 0.8947511

H 2.9359037 -2.8288398 2.6795284

H 0.9959057 -4.1842348 2.2824972

H 0.5020519 -2.5462169 2.8518741

H -1.3338475 -4.3766280 0.7775122

H -1.5559194 -3.0666853 1.9951259

H -1.6596470 -2.6954850 -1.0831077

H -3.0685106 -2.8138869 0.0477858

H -4.4684131 -1.4566576 0.9831809

H -5.0816849 0.0828335 0.3309173

H -3.0431271 -0.2480718 2.6492055

H -4.7382448 0.2566046 2.8149739

H -3.1159643 2.2116919 2.8860084

H -4.2673796 2.3618691 1.5233622

H -1.3461883 1.3339848 1.3954546

H -1.9446664 2.8886167 0.7558321

H -1.9813124 2.5929856 -2.7098255

H -1.0348132 3.1462760 -1.2699069

H 0.3725568 2.9749138 -3.3482802

H 0.0074128 1.2013420 -3.4375795

H 2.4707402 0.6131945 -2.8821643

H 2.6650509 2.4002101 -3.1107875

H 3.4110898 2.6575531 -0.7548040

H 4.4899318 1.5293501 -1.6697161

H 2.9677788 2.7552088 1.3478412

H 1.9657444 1.4416643 2.0049293

H 4.2582675 2.8862557 3.3142277

H 2.9437934 1.9269115 4.0359192

H 5.6843059 0.9519260 2.9893453

H 4.9683027 0.7342286 4.6002068

H 4.8798683 -1.4063696 3.3218150

H 3.2447176 -0.8124968 3.7140734

H 4.8043917 1.0285093 0.8595722

H 4.3979231 -1.3036972 1.0024866

H -3.3436671 -0.7061141 -1.1988570

H -3.4401667 1.6775094 -0.8672199

H 1.5337174 -2.2145553 10.1096897

H 2.5530733 -3.6828109 10.2987908

H 0.2928108 -3.9487815 11.2668702

H 1.5954287 -4.1601022 12.5266428

H -0.6583898 -3.8106808 13.6104065

H -0.6523756 -2.1500055 14.3176182

H -1.8526191 -2.8063582 11.5496768

H -2.8145264 -2.8077866 13.0789104

H -4.1012959 -1.9759655 11.0206114

H -4.3903799 -0.4724753 10.1244290

H -4.7067928 -0.8382815 13.1976620

H -6.0444387 -0.6927279 12.0210827

H -5.5577866 1.5128382 13.2074002

H -5.3457012 1.6262156 11.4370435

H -3.0756810 1.2536486 13.5235282

H -3.4340926 2.7448324 12.5912600

H -0.5595446 2.7378684 10.0593588

H -1.7891645 3.5004340 11.1590766

H -0.0938364 3.4872405 13.0331361

H 0.3835155 4.5305604 11.6286592

H 2.7350879 4.0219131 12.6668982

H 2.1849542 2.6424791 13.7014615

H 4.5085283 2.3092762 12.8195539

H 3.8949948 2.4782274 11.1179202

H 5.8323447 0.0965424 13.2942092

H 4.3928269 -0.8870295 13.6956104

H 6.8161721 -2.0739808 13.1892051

H 5.2661737 -2.8540700 12.7574440

H 6.9661549 -1.1349679 10.8365504

H 6.9162606 -2.9103357 10.8363022

H 5.3093614 -1.5112126 9.1598415

H 4.7183892 -3.0055322 9.9091420

H 5.0571375 0.5089772 11.0568475

H 3.2356518 -0.7570836 9.9601744

H -1.9946851 -0.7321433 10.4448502

H -2.9006153 1.5001231 10.4472414

Th -0.6929073 -0.9722314 6.5172500

O -2.6432911 -0.3559239 8.0418753

O 1.5642220 -0.4386542 7.6574703

O -2.2556877 1.0757247 6.4581788

O 0.9159274 -2.9960985 6.6074018

O -2.9412293 -1.5086357 5.4049945

O -1.7965934 -3.0963014 7.4870645

O 0.4542740 1.1020123 5.4801003

O -0.5287041 -2.0278855 8.8851289

O 1.3216120 -1.5741748 5.0185646

O -0.0802875 0.8369135 8.2744312

O -1.2614113 -2.6888074 4.7000868

O -0.9017725 0.0453837 4.1585588

N -2.5072721 -2.3858990 4.5786617

N 1.1733739 0.5688694 8.3502655

N -1.2915501 -3.0413653 8.6557691

N -0.0925618 1.0279685 4.3248858

N 1.6405000 -2.6794759 5.6019270

N -2.9316391 0.7805182 7.5047796

O 2.5698275 -3.3737715 5.2113398

O -3.2194163 -2.8929809 3.7212370

O 0.1415091 1.8390369 3.4340288

O -3.7824638 1.5226413 7.9752305

O -1.5170114 -3.8932397 9.5129540

O 1.9423192 1.2264451 9.0394878

O 0.7929097 -0.0714848 11.6295660

H 1.7183613 0.3442484 11.7745241

H -0.0220200 0.5903978 11.6569934

H 0.6526455 -0.9960762 12.1078086

O 0.6085090 -0.4200782 -0.2762079

H -0.3850988 -0.6233168 -0.0335886

H 1.3435159 -0.7234877 0.4132514

H 0.7640060 0.4914942 -0.6947766

**************************************************

Sr2+-(H2O) 8

***************************************************

Sr -0.0333764 0.0621615 0.0321502

O -1.6313965 -0.4603363 2.0857540

O -2.1598386 -1.3600929 -0.6676759

O -1.1538338 2.2538384 1.0371635

O -1.6374090 1.3076788 -1.6992742

O 1.9835310 1.6133377 -0.7293095

O 1.2628278 -0.8257906 -2.1239117

O 1.2229391 -2.2511213 0.4281177

O 1.8982614 0.2120298 1.8542532

H -2.7064128 -0.8335647 -1.2815726

H -2.4113367 -2.2885184 -0.8215186

H 1.0213625 -3.2041290 0.4207264

H 1.9360345 -2.1373400 1.0843852

H 1.1482948 -0.8270445 -3.0914010

H 1.7225283 -1.6607050 -1.9134122

H -1.6538044 1.4863964 -2.6568416

H -2.0684296 2.0784252 -1.2835743

H 2.6438437 0.7554315 1.5358533

H 1.9741608 0.2102904 2.8255017

H -2.4269454 -0.9508187 1.8052479

H -1.5408084 -0.6350473 3.0396165

H 2.4043828 1.2085979 -1.5115828

H 2.2390455 2.5531459 -0.7487013

H -0.9013022 3.1864883 1.1604259

H -1.7439734 2.0413464 1.7845752

**************************************************

Th4+-(H2O) 8

******************************************************

Th 0.5750720 -0.1045855 0.0711104

O -0.8359667 -2.0676522 -0.5255848

H -0.9266001 -2.5117907 -1.4146400

H -1.4400646 -2.5810192 0.0809938

O 0.4542917 2.2079550 0.9844660

H 1.0595937 2.9701271 0.7642133

O 0.8734986 -0.2247648 -2.3968199

H 1.5145295 -0.7927023 -2.9091576

O 1.8098929 -0.3463966 2.2177263

H 1.9091119 0.3228934 2.9516129

H 2.3173900 -1.1469452 2.5297195

H -0.1970740 2.5768424 1.6443460

H 0.3756341 0.2919053 -3.0904202

O -1.4120703 0.9839461 -0.9572244

H -1.6228176 1.9592769 -0.9621442

O -1.1263649 -0.3515124 1.8707909

H -2.1028194 -0.1514070 1.8224412

O 2.0999110 -2.0565472 -0.1715036

H 3.0960393 -2.0575050 -0.2303592

O 2.7338842 1.0174774 -0.4611599

H 3.4849664 1.2359981 0.1586171

H 1.8374497 -3.0169221 -0.2383688

H 3.0390671 1.3360856 -1.3564438

H -2.1685374 0.5543482 -1.4462032

H -0.9750872 -0.6724125 2.8036819

**************************************************