Linear Programming Applications

Chapter 4

Linear Programming Applications

1. Media Selection

a.Letx1 = number of TV ads to place

x2 = number of radio ads to place

x3 = number of newspaper ads to place

Max / 100,000x1 / + / 18,000x2 / + / 40,000x3
s.t.
2,000x1 / + / 300x2 / + / 600x3 /  / 18,200 / Advertising Budget
x1 /  / 10 / Max TV
x2 /  / 20 / Max Radio
x3 /  / 10 / Max News
-0.5x1 / + / 0.5x2 / - / 0.5x3 /  / 0 / Max 50% Radio
0.9x1 / - / 0.1x2 / - / 0.1x3 /  / 0 / Min 10% TV

x1, x2, x3,  0

Budget $
Solution: / x1 = 4 / $8,000
x2 = 14 / 4,200
x3 = 10 / 6,000
$18,200 / Audience = 1,052,000.

This information can be obtained from Storm as follows.

bubba - problem 4.1

OPTIMAL SOLUTION - DETAILED REPORT

Variable Value Cost Red. cost Status

1 TV ADS 4.0000 100000.0000 0.0000 Basic

2 RADIO ADS 14.0000 18000.0000 0.0000 Basic

3 NEWSP ADS 10.0000 40000.0000 0.0000 Basic

Slack Variables

4 ADV BUDGET 0.0000 0.0000 -51.3043 Lower bound

5 TV MAX 6.0000 0.0000 0.0000 Basic

6 RADIO MAX 6.0000 0.0000 0.0000 Basic

7 NEWSP MAX 0.0000 0.0000 -11826.0900 Lower bound

8 RAD 50%MX 0.0000 0.0000 -5217.3910 Lower bound

9 TV 10%MN 1.2000 0.0000 0.0000 Basic

Objective Function Value = 1052000

bubba - problem 4.1

OPTIMAL SOLUTION - DETAILED REPORT

Constraint Type RHS Slack Shadow price

1 ADV BUDGET <= 18200.0000 0.0000 51.3043

2 TV MAX <= 10.0000 6.0000 0.0000

3 RADIO MAX <= 20.0000 6.0000 0.0000

4 NEWSP MAX <= 10.0000 0.0000 11826.0900

5 RAD 50%MX <= 0.0000 0.0000 5217.3910

6 TV 10%MN >= 0.0000 1.2000 0.0000

Objective Function Value = 1052000

bubba - problem 4.1

SENSITIVITY ANALYSIS OF COST COEFFICIENTS

Current Allowable Allowable

Variable Coeff. Minimum Maximum

1 TV ADS 100000.0000 -18000.0000 120000.0000

2 RADIO ADS 18000.0000 15000.0000 6.2500E+35

3 NEWSP ADS 40000.0000 28173.9100 6.2500E+35

bubba - problem 4.1

SENSITIVITY ANALYSIS OF RIGHT-HAND SIDE VALUES

Current Allowable Allowable

Constraint Type Value Minimum Maximum

1 ADV BUDGET <= 18200.0000 14750.0000 32000.0000

2 TV MAX <= 10.0000 4.0000 Infinity

3 RADIO MAX <= 20.0000 14.0000 Infinity

4 NEWSP MAX <= 10.0000 0.0000 10.0000

5 RAD 50%MX <= 0.0000 -8.0500 2.9362

6 TV 10%MN >= 0.0000 -Infinity 1.2000

b.The shadow price for the advertising budget constraint is 51.3043. Thus, a $100 increase in budget ($18,300 is within the allowable range of RHS for constraint 1) should provide an increase in audience coverage of approximately 5,130.

3. Investment and Loan Planning

x1 = $ to invest in automobile loans

x2 = $ to invest in furniture loans

x3 = $ to invest in other secured loans

x4 = $ to invest in signature loans

x5 = $ to invest in "risk free" securities

Max / 0.08x1 / + / 0.10x2 / + / 0.11x3 / + / 0.12x4 / + / 0.09x5
s.t.
x5 /  / 600,000 / [1]
x4 /  / 0.10(x1 + x2 + x3 + x4)
or / -0.10x1 / - / 0.10x2 / - / 0.10x3 / + / 0.90x4 /  / 0 / [2]
x2 / + / x3 /  / x1
or / - x1 / + / x2 / + / x3 /  / 0 / [3]
x3 / + / x4 /  / x5
or / + / x3 / + / x4 / - / x5 /  / 0 / [4]
x1 / + / x2 / + / x3 / + / x4 / + / x5 / = / 2,000,000 / [5]

x1, x2, x3, x4, x5  0

Solution:

Automobile Loans / (x1) / = / $630,000
Furniture Loans / (x2) / = / $170,000
Other Secured Loans / (x3) / = / $460,000
Signature Loans / (x4) / = / $140,000
Risk Free Loans / (x5) / = / $600,000

Annual Return $188,800 (9.44%)

bubba - Problem 4.3

OPTIMAL SOLUTION - DETAILED REPORT

Variable Value Cost Red. cost Status

1 AUTO LOANS 630000.0000 0.0800 0.0000 Basic

2 FURN LOANS 170000.0000 0.1000 0.0000 Basic

3 OTH SEC L 460000.0000 0.1100 0.0000 Basic

4 SIGN LOANS 140000.0000 0.1200 0.0000 Basic

5 SECURITIES 600000.0000 0.0900 0.0000 Basic

Slack Variables

6 CONSTR 1 0.0000 0.0000 -8.0000E-03 Lower bound

7 CONSTR 2 0.0000 0.0000 -0.0200 Lower bound

8 CONSTR 3 0.0000 0.0000 -0.0100 Lower bound

9 CONSTR 4 0.0000 0.0000 -1.0000E-02 Lower bound

Objective Function Value = 188800

bubba - Problem 4.3

OPTIMAL SOLUTION - DETAILED REPORT

Constraint Type RHS Slack Shadow price

1 CONSTR 1 <= 600000.0000 0.0000 8.0000E-03

2 CONSTR 2 <= 0.0000 0.0000 0.0200

3 CONSTR 3 <= 0.0000 0.0000 0.0100

4 CONSTR 4 <= 0.0000 0.0000 1.0000E-02

5 AMT TO INV = 2000000.0000 0.0000 0.0920

Objective Function Value = 188800

4. Quality Assurance

a.x1 = pounds of bean 1 to use in coffee blend

x2 = pounds of bean 2 to use in coffee blend

x3 = pounds of bean 3 to use in coffee blend

Min / 0.50x1 / + / 0.70x2 / + / 0.45x3
s.t.
/  / 75
or / 10x2 - 15x3 /  / 0 / Aroma
/  / 80
or / 6x1 / + / 8x2 / - / 5x3 /  / 0 / Taste
x1 /  / 500 / Bean 1
x2 /  / 600 / Bean 2
x3 /  / 400 / Bean 3
x1 / + / x2 / + / x3 / = / 1000 / 1000 pounds

x1, x2, x3  0

Refer to Storm output below.

Optimal Solution: x1 = 500, x2 = 300, x3 = 200

Optimal Cost: $550 (minimum cost)

b.Cost per pound = $550/1000 = $0.55

c.Surplus for aroma: s1 = 0; thus aroma rating = 75

Surplus for taste: s2 = 4400; thus taste rating = 80 + (4400/1000) = 84.4

d.Shadow price = 0.60. An additional pound of coffee can be produced at a cost of $0.60 per pound.

bubba - Problem 4.4

OPTIMAL SOLUTION - DETAILED REPORT

Variable Value Cost Red. cost Status

1 BEAN 1 500.0000 0.5000 0.0000 Basic

2 BEAN 2 300.0000 0.7000 0.0000 Basic

3 BEAN 3 200.0000 0.4500 0.0000 Basic

Slack Variables

4 AROMA RTG 0.0000 0.0000 0.0100 Lower bound

5 TASTE RTG 4400.0000 0.0000 0.0000 Basic

6 BEAN 1 AVL 0.0000 0.0000 0.1000 Lower bound

7 BEAN 2 AVL 300.0000 0.0000 0.0000 Basic

8 BEAN 3 AVL 200.0000 0.0000 0.0000 Basic

Objective Function Value = 550

bubba - Problem 4.4

OPTIMAL SOLUTION - DETAILED REPORT

Constraint Type RHS Slack Shadow price

1 AROMA RTG >= 0.0000 0.0000 0.0100

2 TASTE RTG >= 0.0000 4400.0000 0.0000

3 BEAN 1 AVL <= 500.0000 0.0000 -0.1000

4 BEAN 2 AVL <= 600.0000 300.0000 0.0000

5 BEAN 3 AVL <= 400.0000 200.0000 0.0000

6 COFF NEED = 1000.0000 0.0000 0.6000

Objective Function Value = 550

5. Blending Problem

Letx1 = amount (in ounces) of ingredient A per gallon of fuel

x2 = amount (in ounces) of ingredient B per gallon of fuel

x3 = amount (in ounces) of ingredient C per gallon of fuel

Min / 0.10x1 / + / 0.03x2 / + / 0.09x3
s.t.
1x1 / + / 1x2 / + / 1x3 /  / 10 / [1]
1x1 / + / 1x2 / + / 1x3 /  / 15 / [2]
1x1 /  / 1x2
or / 1x1 / - / 1x2 /  / 0 / [3]
1x3 /  / 1/2x1
or / -1/2x1 / + / 1x3 /  / 0 / [4]

x1, x2, x3  0

Refer to Storm output below.

Optimal Solution: x1 = 4, x2 = 4, x3 = 2

Optimal Cost = $0.70 per gallon.

bubba - Problem 4.5

OPTIMAL SOLUTION - DETAILED REPORT

Variable Value Cost Red. cost Status

1 INGR A 4.0000 0.1000 0.0000 Basic

2 INGR B 4.0000 0.0300 0.0000 Basic

3 INGR C 2.0000 0.0900 0.0000 Basic

Slack Variables

4 CONSTR 1 0.0000 0.0000 0.0700 Lower bound

5 CONSTR 2 5.0000 0.0000 0.0000 Basic

6 CONSTR 3 0.0000 0.0000 0.0400 Lower bound

7 CONSTR 4 0.0000 0.0000 0.0200 Lower bound

Objective Function Value = 0.7

bubba - Problem 4.5

OPTIMAL SOLUTION - DETAILED REPORT

Constraint Type RHS Slack Shadow price

1 CONSTR 1 >= 10.0000 0.0000 0.0700

2 CONSTR 2 <= 15.0000 5.0000 0.0000

3 CONSTR 3 >= 0.0000 0.0000 0.0400

4 CONSTR 4 >= 0.0000 0.0000 0.0200

Objective Function Value = 0.7